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Abstract
We investigate a dynamical system consisting of N particles moving on a 
d-dimensional torus under the action of an electric field E with a Gaussian thermostat 
to keep the total energy constant. The particles are also subject to stochastic 
collisions which randomize direction but do not change the speed. We prove that 
in the van Hove scaling limit, E → 0 and t → t/|E|2, the trajectory of the speeds 
vi is described by a stochastic differential equation corresponding to diffusion on a 
constant energy sphere. This verifies previously conjectured behavior.

Our results are based on splitting the system’s evolution into a ‘slow’ process 
and an independent ‘noise’. We show that the noise, suitably rescaled, converges 
to a Brownian motion, enhanced in the sense of rough paths. Then we employ 
the Itô–Lyons continuity theorem to identify the limit of the slow process.

Keywords: Van Hove limit, electric field, thermostated dynamics
Mathematics Subject Classification numbers: 82B31, 60H10, 37A50

1. Introduction

Many-particle dynamical systems in which different quantities evolve on different time scales 
are common in nature. This situation arises when the microscopic degrees of freedom come 
to some local equilibrium (stationary) state characterized by parameters which vary slowly in 
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time. This leads to autonomous macroscopic equations, such as the Navier–Stokes equation, 
with or without stochastic terms. Such equations are generally very hard to derive rigorously, 
especially in situations which involve deterministic dynamics. In this note we continue our 
investigation of such a system of N interacting particles with both deterministic and stochastic 
dynamics which conserves the total kinetic energy.

The system we consider is a variation of the Drude–Lorentz model of electrical conduction 
in a metal [1]. It consists of N particles (electrons) in a d-dimensional torus under the action 
of a constant external field E. The particles undergo elastic collisions with fixed or random 
scatterers, which change directions of the velocities {p k} but not the speeds {|p k|}, and are 
subject to a Gaussian thermostat which keeps the total kinetic energy of the system constant. 
The thermostat introduces dynamical interactions between the particles.

We have studied this system extensively, in d  =  2, via numerical simulations and approx-
imate analytical methods, using various models for the elastic collisions [4–7]. We have 
argued there that in all collision models, for a weak field E the evolution splits into a fast 
and slow parts which evolve essentially independently, with the slow part satisfying an 
autonomous diffusive equation. We were however unable to prove this in a rigorous way: 
see section 5.

Here we show, for the first time, in a rigorous mathematical way, using the simplified col-
lision model, that the long time weak field evolution of the properly scaled system (van Hove 
scaling) is described by an autonomous SDE, driven by an N-dimensional Brownian motion. 
To do this we apply the theory of ‘rough paths’, pioneered by Lyons (see e.g. [16]). We follow 
and adapt the approach of Kelly and Melbourne [13] for nonuniformly hyperbolic dynamical 
systems. We find a way to decompose the evolution of the velocities {p k} into ‘fast’ and ‘slow’ 
components, with the fast component uncoupled from the slow.

Remark 1.1. A straightforward decomposition would be pk �→ (vk,ωk), where vk = |pk|
and ωk = pk/|pk|. This corresponds to an intuition of quickly changing directions and slowly 
changing speeds. However, in such a decomposition, the evolution of {ωk} depends on {vk}: 
between collisions, the particles change directions, and the lower a particle’s speed, the faster 
its direction changes. The influence of {vk} on {ωk} causes substantial problems: the topic of 
rough differential equations with noise coupled to the solution is an unexplored area. (Though 
some related progress has been made in dynamical systems [9–11].) We use a different de-
composition, which may look technical and artificial but gives independent noise.

To make our approach work, we make the following simplifying assumptions:

 •  we assume that the collision rate of particle k is independent from its speed vk. In the 
kinetic theory of gases, these are referred to as ‘Maxwellian’ collisions; 

 •  at each collision, the outgoing direction ω  of the colliding particle is selected uniformly 
on the unit sphere Sd−1 in Rd.

The paper is organized as follows. In section 2 we give a precise description of the model 
and state our results. Section 3 contains the main idea and strategy of the proof of our main 
result while section 4 contains a technical adaptation of [13] to our situation, used in section 3. 
Finally, in section 5 we discuss the connection of this work with previous work in this ongo-
ing research. In appendix A we give a standard example where the solution of a differential  
equation  is not a continuous function of a driving signal, and in appendix B we show 
that an n-particle diffusion on the sphere of radius 

√
n corresponds, as n → ∞, to an  

Ornstein–Uhlenbeck process for the motion of a single particle.
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2. Model and results

We consider a system formed by N particles moving on a torus Td , d � 26, with positions qk

and velocities pk = q̇k . The particles move under an electric field E and a Gaussian thermo-
stat, which preserves the total energy, so U =

�
k |pk|2 is constant [4–7]:

�
dqk = pk dt,

dpk =
�

E −
�

j E·pj

U pk

�
dt. (1)

In addition each particle experiences random collisions, independent of the other particles. 
Collisions are driven by Poisson processes with rate λ > 0, the same for all particles. At a 
collision, a particle’s direction pk/|pk|, which is a point on the unit sphere Sd−1 in Rd, changes 
randomly and uniformly on Sd−1, while the speed |p k| is preserved.

Suppose that E = εn̂, where n̂ ∈ Rd  is a fixed unit vector, and ε > 0. Let vk = |pk|. Let 
the initial conditions p k(0) and qk(0) be fixed. Then v = (v1, . . . , vN) is random process with 
continuous sample paths.

Remark 2.1. In our model, positions of particles affect neither velocities between collisions 
nor collisions themselves. Working with the velocities, the positions can be safely ignored.

Heuristic arguments [5] show that for small ε, the time changed process vε, vε(t) = v(ε−2t), 
behaves like a nontrivial stochastic process. In this paper, we describe this behavior rigorously.

Our main result is:

Theorem 2.2. As ε → 0, the time changed processes vε, vε(t) = v(ε−2t), converge weakly 
to the solution v0 of the Itô stochastic differential equation

dv0
k = δ1/2

�
dWk − v0

k

�
j v0

j dWj

U

�
+ δ

�d − 1
2v0

k
− (Nd − 1)v0

k

2U

�
dt,

v0
k(0) = |pk(0)|.

(2)

Here δ = 2λ−1d−1 and W1, . . . , WN  are standard independent Brownian motions. The weak 
convergence is in the C0([0,∞),RN) topology.

Remark 2.3. Since the processes vε have continuous sample paths in RN , it is natural to 
think of them as random elements of the space C0([0,∞),RN) of continuous functions with 
the usual topology of uniform convergence on compact sets.

The weak convergence of vε to v0 in C0([0,∞),RN) topology means that Ef (vε) → Ef (v0)
for every continuous test function f : C0([0,∞),RN) → R. Weak convergence is also known 
as convergence in distribution and convergence in law.

Remark 2.4. The evolution of speeds {v0
k} can be described by a much simpler SDE. There 

exists a dN-dimensional process u0 = (u0
1, . . . , u0

N), with each u0
k  a d-dimensional process and 

v0
k = |u0

k | at all times. The process u0 is a diffusion on the sphere |u0|2 = U  which can be writ-
ten as a solution of a Stratonovich SDE

du0 =
�

I − u0(u0)∗

U

�
◦ dW. (3)

6 See remark 2.5 for d  =  1.
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Here W is a dN -dimensional Brownian motion with covariance matrix 2λ−1d−1I . See sec-
tion 3, specifically theorem 3.3, for details.

Remark 2.5. Theorem 2.2 is restricted to d � 2: with d = 1, SDE (2) gives a wrong process
which allows vk to become negative. Remark 2.4, however, fully applies to all d � 1. In our
proof, theorem 2.2 is derived from remark 2.4 and the restriction d � 2 comes up in the trans-
ition from (3) to (2). With d = 1, the correct SDE for vk is expected to be more complicated than
(2), much like the SDE for the absolute value of a one-dimensional (1D) Brownian motion.

3. Proof of theorem 2.2

3.1. Strategy

We split the velocities pk into ‘slow’ and ‘fast’ components, such that the fast component is 
independent from the slow one. Then we write the evolution of the slow component as a rough 
differential equation, where the noise is generated by the fast component alone. We show that 
the noise, suitably rescaled, converges as ε → 0 to an enhanced Brownian motion in a suitable 
rough path topology. Then we use the Itô–Lyons continuity theorem to describe the limiting 
slow process. Finally, we recover the speeds vk from the slow process.

3.2. Decomposition into fast and slow components

We start by (re)defining the random collisions in a convenient way. For 1 � k � N , let 
τk = (τ 1

k , τ 2
k , . . .) be Poisson processes with rate λ, and let g1

k , g2
k , . . . be random matrices 

in the orthogonal group O(d), chosen uniformly (i.e. with respect to the Haar measure). We 
assume that all these are mutually independent.

We make the kth particle collide at times τ n
k , with the instantaneous change of velocity

at time τ n
k given by pk(τ

n
k ) = gn

k pk(τ
n
k − 0), where pk(t − 0) stands for the left limit of pk at 

time t.
Define φk : [0,∞) → O(d), k = 1 . . .N  by φk(t) = I  for t < τ 1

k  and

φk(t) = gn
kgn−1

k · · · g1
k for t ∈ [τ n

k , τ n+1
k ), n � 1.

Let uk = φ∗
k pk, where the star means the transpose (also inverse in O(d)). Then uk(0) = pk(0)

and |uk| = |pk| = vk at all times. Observe that uk does not jump at collisions, in contrast with 
pk. From the equations of motion (1) we obtain

duk =
�
φ∗

k E − uk

�
j u∗j φ

∗
j E

U

�
dt. (4)

Note that uk are continuous and piecewise smooth processes.

Let Φk(t) =
� t

0 φ
∗
k (s)n̂ ds. Writing all uk, 1 � k � N  as one Nd-dimensional vector u, and 

similarly all Φk as one vector Φ, we rewrite (4) as

du = εA(u) dΦ, (5)

where A(u) = I − uu∗
U  is a smooth matrix valued function.

Define uε(t) = u(ε−2t) and Wε(t) = εΦ(ε−2t). For every ε > 0, the process Wε is piece-
wise smooth and uε is the solution of an ordinary differential equation

duε = A(uε) dWε, uε(0) = ξ, (6)
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where ξ ∈ RNd corresponds to the initial condition uε
k (0) = pk(0).

The above is the decomposition into a ‘slow’ component u and an uncoupled ‘fast’ comp-
onent Φ. While u has no obvious physical meaning, we can still use it to recover the speeds, 
because vk = |uk|.

3.3. Limiting behavior

Our next goal is to identify the limit of uε as ε → 0. We can treat uε as a function of Wε. Indeed, 
there is a solution map Γ, defined on all piecewise smooth paths, such that Γ(Wε) = uε for 
each ε > 0.

We will show that Wε converges to a dN -dimensional Brownian motion W with covariance 
matrix 2λ−1d−1I . (Convergence is weak in the C0([0,∞),Rd) topology.)

Then, heuristically, one would expect that u0 = limε→0 Γ(Wε) = Γ(W). Such a statement 
requires continuity of Γ on a suitable space of paths, including all Wε and W. There are two 
immediate problems:

 •  As a Brownian motion, W is rather irregular, so Γ(W) cannot be understood as a solution 
of an ordinary differential equation. It needs an interpretation, possibly as a solution of 
the stochastic differential equation du0 = A(u0) � dW , where � means integration in the 
sense of e.g. Itô, Stratonovich or backward Itô.

 •  There is no reason for Γ to be continuous. In fact, no matter what interpretation of Γ(W)
we choose, Γ will fail to be continuous in any usable way. (We provide a standard example 
in appendix A.)

Identifying u0 is a standard problem in the theory of rough paths. We fix T  >  0 and consider 
all processes in the time interval [0, T]. For s, t ∈ [0, T], let

Wε(s, t) = Wε(t)− Wε(s), Wε(s, t) =
� t

s
Wε(r)⊗ dWε(r).

Here ⊗ denotes the tensor product, i.e. if A, B ∈ Rn , then A ⊗ B ∈ Rn×n is given by 
(A ⊗ B)j,k = AjBk.

The pairs (Wε,Wε) are the canonical lifts of the original piecewise smooth paths Wε, see 
[12, section 2]. These pairs belong to the space Cα of α-Hölder rough paths with α ∈ (1/3, 1/2).

Fix α ∈ (1/3, 1/2). The space Cα consists of pairs

(X,X) ∈ C0([0, T]× [0, T],RNd × RNd×Nd)

with

�(X,X)�α = |X|α +
�
|X|2α < ∞,

where

|X|α = sup
s�=t∈[0,T]

|X(s, t)|
|t − s|α and |X|2α = sup

s�=t∈[0,T]

|X(s, t)|
|t − s|2α .

Further we require that (X,X) satisfies X(t, t) = 0 and X(t, t) = 0 for all t, and

Xs,t − Xs,u − Xu,t = Xs,u ⊗ Xu,t.

The above is known as the ‘Chen’s relation’. It holds for and is inspired by the canonical lifts 
of smooth paths such as (Wε,Wε). Because of the Chen’s relation, Cα is not a linear subspace 
of C0.
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The topology on Cα is inherited from the seminorm � · �α on C0: it is given by the distance

dCα((X,X), (Y ,Y)) = sup
s�=t∈[0,T]

|X(s, t)− Y(s, t)|
|t − s|α + sup

s�=t∈[0,T]

|X(s, t)− Y(s, t)|
|t − s|2α .

A key result in rough paths is the Itô–Lyons continuity theorem [12, section 8]. Applied 
to the differential equation (6), it gives a continuous map Γ : Cα → C0([0, T],RNd), such that 
Γ(Wε,Wε) = uε for all ε.

Remark 3.1. Our application of the Itô–Lyons continuity theorem requires that the func-
tion A(u) in (6) has bounded continuous derivatives up to the second order. Our function 

A(u) = I − uu∗
U  is not bounded on RNd. However, all the solutions uε are uniformly bounded, 

namely restricted to the sphere |uε|2 = U, where the global unboundedness of A(u) or its de-
rivatives does not cause problems.

Suppose now that the random elements (Wε,Wε) converge weakly in Cα to some (W,W). 
Then, using the continuous mapping theorem, we find u0 = Γ(W,W).

Further, in section 4, we show that (Wε,Wε) do indeed converge to a Cα-valued random 
process (W,W), where W is the Brownian motion with covariance matrix 2λ−1d−1I  and, 
using ◦dW to denote Stratonovich integration,

W(s, t) = W(t)− W(s), W(s, t) =
� t

s
W(r)⊗ ◦dW(r).

Remark 3.2. A rough path (W,W), where W is a Brownian motion, is often referred to as 
enhanced Brownian motion. In our case, the enhancement is Stratonovich. Often it is natural 
to consider the Itô enhancement; in general, the options for enhancement are plentiful.

Rough integration against (W,W) coincides with Stratonovich integration against W (see 
[12]). This means that u0 = Γ(W,W) is the solution of the Stratonovich stochastic differential 
equation du0 = A(u0) ◦ dW . The convergence is on the time interval [0, T], but T is arbitrary, 
so convergence on [0,∞) follows.

In other words, we obtain the following result:

Theorem 3.3. As ε → 0, the processes uε converge weakly in the C0([0,∞),RNd) topology 
to u0, the solution of Stratonovich differential equation

du0 =
�

I − u0(u0)∗

U

�
◦ dW, u0(0) = ξ. (7)

Here W is a dN -dimensional Brownian motion with covariance matrix 2λ−1d−1I .

Remark 3.4. The process (7) is a diffusion on the sphere |u0|2 = U . When Nd is large and 
U  =  Nd, coordinate projections of u0 are close to an Ornstein–Uhlenbeck process. We provide 
the details in appendix B.

Remark 3.5. Theorem 2.2 is a corollary of theorem 3.3.
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4. Convergence of rough paths

In section 3 we introduced the random rough paths (Wε,Wε) and (W,W). To prove theorem 
3.3, it remains to show that (Wε,Wε) converge weakly to (W,W) in the space Cα of α-Hölder 
rough paths, with α ∈ (1/3, 1/2). This is the goal of this section.

We follow the arguments for deterministic dynamical systems by Kelly and Melbourne 
[13]. Our situation is simpler because of randomness, but [13] does not cover it, so we provide 
an adaption of their proof.

Remark 4.1. Writing Wε(t) = Wε(0, t) and Wε(t) = Wε(0, t), we can work with the rough 
paths (Wε,Wε) as a random processes, defined on t ∈ [0,∞). The ‘increments’ Wε(s, t) and 
Wε(s, t) can be recovered from the Chen’s relation:

Wε(s, t) = Wε(t)− Wε(s),
Wε(s, t) = Wε(t)−Wε(s)− Wε(s)⊗ Wε(t).

To prove convergence of (Wε,Wε) to (W,W) in the Cα topology, it is sufficient to show 
convergence in the weaker uniform topology together with suitable moment bounds (see [13, 
theorem 9.1]):

Lemma 4.2. As ε goes to zero, the process (Wε,Wε) converges weakly to (W,W) in 
C0([0,∞),RNd × RNd×Nd).

Moreover, there exist q  >  3 and C  >  0 such that for all ε > 0 and 0 � s � t ,

�Wε(s, t)�2q � C|t − s|1/2 and �Wε(s, t)�q � C|t − s|. (8)

Here �X�q = (E|X|q)1/q is the Lq norm.

Here is an outline of the proof of lemma 4.2:

• Observe that the processes Wε(t) do not have stationary increments. This comes from 
the fact that φk(0) = I  instead of being distributed uniformly in O(d). This is a minor 
inconvenience which we solve by introducing a random time shift τ  such that the random 
processes Ŵε(t) = Wε(ε2τ + t)− Wε(ε2τ) do have stationary increments. We show that 
the rough paths (Ŵε, Ŵε), where Ŵε are the respective iterated integrals, well approxi-
mate (Wε,Wε).

• We represent Ŵε(t) = ε
� ε−2t

0 h ◦ Fs ds, where Ft : Ω → Ω is a measure preserving semi-

flow on a probability space (Ω,P) and h : Ω → RNd  is an observable.
• We consider a discrete time dynamical system F : Ω → Ω, where F  =  F1. It preserves the 

measure P, and our construction ensures that F is mixing. The semiflow Ft is a suspension 

over F with the roof function equal to 1. We consider the induced observable V : Ω → RNd , 

V =
� 1

0 h ◦ Ft dt , and use a martingale-coboundary decomposition V = m + χ ◦ F − χ, 
where both χ and m are bounded and m is a ‘martingale part’. This means that for every 

n, the ‘backward’ sum 
�n

j=n−k m ◦ F j  is a martingale on k = 0, . . . , n.

• Let �Wε(t) = ε
��ε−2t�

j=0 V ◦ F j be a discrete time version of Ŵ , and let �Wε be the corre-

sponding iterated integral. Then ( �W,�W) is a random càdlàg process. By [13, theorem 
4.3], if F is mixing and V  allows a martingale-coboundary decomposition as above, then 

the weak limit of ( �Wε,�Wε) in the C0 topology is described by Green–Kubo-like formulas 
(10).
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• The processes ( �Wε,�Wε), (Ŵε, Ŵε) and (Wε,Wε) are closely related, and knowing the 
weak limit of the first allows us to compute the weak limit of the others.

 •  The moment bounds for ( �Wε,�Wε) and (Ŵε, Ŵε), and hence for (Wε,Wε), are implica-
tions of the martingale-coboundary decomposition [13, section 7].

In the rest of this section, we implement the above.

4.1. Probability measure preserving flow

Note that the processes φk  are not stationary. For instance, φk(0) = I  for all k. Let 
τ = max{τ 1

k : 1 � k � N} and φ̂k(t) = φk(t + τ), t � 0. Now, φ̂k  are stationary processes, 
and so are φ̂∗

k n̂.
Let ψ be a random process with values in RNd, obtained by stacking together all the coor-

dinates of φ̂∗
k n̂, k = 1 . . .N .

Let Ω = D([0,∞),RNd) be the space of càdlàg functions.
Let P be the probability measure on Ω, corresponding to the distribution of ψ, and let E

denote the corresponding expectation.
Define the flow Ft : Ω → Ω by (Ftx)(s)  =  x(t  +  s) for s, t � 0, and let h : Ω → RNd , 

h(x) = x(0) be an observable. Since ψ is a stationary process, the measure P is Ft-invariant.
Define Ŵε and Ŵε by

Ŵε(t) = ε

� ε−2t

0
h ◦ Fs ds and Ŵε(t) =

� t

0
Ŵε(s)⊗ dŴε(s).

Remark 4.3. Where it is convenient, we assume that Wε, Ŵε and τ  are defined on the same 
probability space such that Wε(ε2τ + t)− Wε(ε2τ) = Ŵε(t) for all t � 0. The iterated int-
egrals Wε and Ŵε are fully determined by Wε and Ŵε, so they also belong to this probability 
space.

4.2. Discrete time system

Let F  =  F1, and P : L1(Ω) → L1(Ω) be the (Ruelle–Perron–Frobenius) transfer operator, 
corre sponding to F and P. Formally, P is defined by

E(Pv w) = E(v w ◦ F) for all v ∈ L1(Ω) and w ∈ L∞(Ω).

Remark 4.4. Pv can be computed explicitly. For x ∈ Ω,

(Pv)(x) = E(v | F = x) =
�

Ω

v(y) dP(y | Fy = x),

where P(· | F = x) is the regular conditional probability corresponding to the observable 
F : Ω → Ω, and E(· | F = x) is the corresponding expectation. (see [8] for a guide on guilt-
free manipulation with regular conditional probabilities.)

Similarly, (Pkv)(x) = E(v | Fk = x) for k � 1.

Define V : Ω → RNd  by V =
� 1

0 h ◦ Ft dt . Then V(x) =
� 1

0 x(t) dt  for x ∈ Ω. Note that V  is 
a bounded random variable, and due to the natural symmetries of our model, EV = 0.
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Proposition 4.5. For a ∈ RNd,
�

Ω

x(t) dP(x | x(0) = a) = e−λta.

Proof. Recall the definition of φk . Note that for a� ∈ O(d),

E(φ∗
k (t)n̂ | φk(0) = a�, t < τ 1

k ) = a�∗n̂, and

E(φ∗
k (t)n̂ | φk(0) = a�, t � τ 1

k ) = 0.

Hence

E(φ∗
k n̂ | φk(0) = a�) = P(t < τ 1

k ) a�∗n̂ = e−λta�∗n̂.

The result follows. □

Proposition 4.6. For x ∈ Ω and k � 0,

(PkV)(x) =
e−λk(eλ − 1)

λ
x(0).

Proof. We observe that (Ω,P) is probability space of Markov, stationary and time-reversi-
ble processes. In particular, for x ∈ Ω, t ∈ [0, 1] and k � 1,

�

Ω

y(t) dP(y | Fky = x) =
�

Ω

y(t) dP(y | y(k) = x(0))

=

�

Ω

y(k − t) dP(y | y(0) = x(0)) = e−λ(k−t)x(0),
(9)

where in the last step we used proposition 4.5.
Using (9) and Fubini’s theorem, write for k � 1:

(PkV)(x) = E(V | Fk = x) =
�

Ω

� 1

0
y(t) dt dP(y | Fky = x)

=

� 1

0

�

Ω

y(t) dP(y | Fky = x) dt =
� 1

0
e−λ(k−t)x(0) dt =

e−λk(eλ − 1)
λ

x(0).
□

Now we approximate V  by a martingale, following [13, section 4]. Define χ, m : Ω → RNd

by

χ =

∞�

k=1

PkV and V = m + χ ◦ F − χ.

Using proposition 4.6 and the definition of V , we compute χ and m explicitly:

χ(x) =
1
λ

x(0) and m(x) =
� 1

0
x(t) dt +

x(0)− x(1)
λ

.

Clearly m, V ∈ L∞(Ω). It is standard that Pm  =  0 (see [13, proposition 4.4]).
Let Vi and xi denote the ith coordinates of V  and x respectively.
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Proposition 4.7. 
�

Ω

xi(t)xj(s) dP(x) =
�

0, i �= j
d−1e−λ|t−s|, i = j

.

Proof. Let r � 0, and let x be distributed in Ω according to P. Note that 
�Nd

j=1 x2
j (r) = N . 

Then due to the symmetry of the distribution P,
�

Ω

x2
j (r) dP(x) = d−1 for every j.

Fix j . By proposition 4.5,
�

Ω

xj(0)xj(r) dP(x | x(0)) = x2
j (0)e

−λr.

Without loss of generality suppose that s � t . By the above, and using the fact that the 
measure P is stationary, write

�

Ω

xj(t)xj(s) dP(x) =
�

Ω

xj(0)xj(t − s) dP(x)

=

�

Ω

�

Ω

xj(0)xj(t − s) dP(x | x(0)) dP(x)

=

�

Ω

x2
j (0)e

−λ(t−s) dP(x) = d−1e−λ(t−s).

It remains to show that 
�
Ω

xi(t)xj(s) dP(x) = 0 when i �= j. For this we use again a sym-
metry of the distribution P: for each j , it is invariant under transformation xj �→ −xj. Thus 
with i �= j,

�

Ω

xi(t)xj(s) dP(x) = −
�

Ω

xi(t)xj(s) dP(x) = 0.
□

Proposition 4.8. If i �= j, then E(Vi Vj ◦ Fk) = 0. Also,

E(Vi Vi ◦ Fk) =

�
(eλ−1)2e−λ(k+1)

λ2d , k � 1
2(e−λ+λ−1)

λ2d , k = 0
.

Proof. Use Fubini’s theorem and proposition 4.7:

E(Vi Vj ◦ Fk) =

�

Ω

� 1

0
xi(t) dt

� k+1

k
xj(s) ds dP(x)

=

� 1

0

� k+1

k

�

Ω

xi(t)xj(s) dP(x) ds dt =
� 1

0

� k+1

k
d−1e−λ|s−t| ds dt.

The result follows. □
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Define

�E =

∞�

k=1

E(V ⊗ V ◦ Fk),

�Σ = E(V ⊗ V) +

∞�

k=1

E(V ⊗ V ◦ Fk + V ◦ Fk ⊗ V).

Corollary 4.9. �E = 1−e−λ

λ2d I  and �Σ = 2
λd I .

Define a càdlàg process ( �Wε,�Wε) : Ω → D([0,∞),RNd × RNd×Nd) by

�Wε(t) = ε

�ε−2t��

j=0

V ◦ F j and �Wε(t) =
� t

0

�Wε(s)⊗ d �Wε(s).

By [13, theorem 4.3], ( �Wε,�Wε) converges weakly to ( �W,�W) in D([0,∞),RNd × RNd×Nd)

in the uniform topology, where �W  is the N-dimensional Brownian motion with covariance 
matrix �Σ, and

�W(t) =
� t

0

�W ⊗ d �W + �Et. (10)

4.3. Continuous time system

In this part of the proof we are closely following [13, section 6].
Define H : Ω× [0, 1) → RNd , H(x, r) =

� r
0 x(t) dt. Let

E = �E +

�

Ω

� 1

0
H(x, r)⊗ x(r) dr dP(x).

Proposition 4.10. E = 1
λd I .

Proof. Indeed, using the definition of H, Fubini’s theorem and proposition 4.7, write
�

Ω

� 1

0
H(x, r)⊗ x(r) dr dP(x) =

�

Ω

� 1

0

� r

0
x(t) dt ⊗ x(r) dr dP(x)

=

� 1

0

� r

0

�

Ω

x(t)⊗ x(r) dP(x) dt dr =

� 1

0

� r

0
d−1e−λ|t−r|I dt dr =

e−λ + λ− 1
λ2d

I.

The result follows from corollary 4.9. □
Recall the definition of Ŵε and Ŵε. By [13, theorem 6.1], (Ŵε, Ŵε) converges weakly 

to (W,W) in C0([0,∞),RNd × RNd×Nd), where W is the N-dimensional Brownian motion 
with covariance matrix Σ = �Σ, and W(t) =

� t
0 W ⊗ dW + Et . Converting the Itô integral to 

Stratonovich, we obtain

W(t) =
� t

0
W ⊗ ◦dW − 1

2
Σt + Et =

� t

0
W ⊗ ◦dW.
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We modelled the flow Ft as a suspension over F with the roof function identically equal 
to 1. Both h and V  are bounded observables, and we have the L∞ martingale-coboundary 
decomposition V = m + χ ◦ F − χ. Therefore the results of [13, section 7.2] apply. By [13, 
corollary 7.6], for every q  >  3 there exists C  >  0 such that for all 0 � s � t ,

�Ŵε(s, t)�2q � C|t − s|1/2 and �Ŵε(s, t)�q � C|t − s|. (11)

4.4. Completion of the proof of lemma 4.2

We proved lemma 4.2 for the processes (Ŵε, Ŵε) in place of (Wε,Wε). As in remark 4.3, the 
two are related by the time shift

Ŵε(t) = Wε(ε2τ , ε2τ + t) and Ŵε(t) = Wε(ε2τ , ε2τ + t)

for all t � 0.
It remains to prove the moment bounds (8), based on (11), and to show that (Ŵε, Ŵε)

and (Wε,Wε) are close in C0([0,∞),RNd × RNd×Nd). This is done in the following two 
propositions.

Proposition 4.11. For every q  >  3 there exists C  >  0 such that for all 0 � s � t ,

�Wε(s, t)�2q � C|t − s|1/2 (12)

�Wε(s, t)�q � C|t − s| (13)

Proof. As in remark 4.3, we assume that τ , Wε and Ŵε are defined on the same probability 
space such that Wε(ε2τ + t)− Wε(ε2τ) = Ŵε(t) for all t � 0, and Ŵε is independent from τ .

Note that �τ�q is finite for every q � 1.
Assume that 0 � s � t . First we show (12). We consider three cases:

(a) If s � t � ε2τ , then |Wε(s, t)| � ε−1|t − s| � τ 1/2|t − s|1/2, thus

�Wε(s, t)1s�t�ε2τ�2q � |t − s|1/2.

(b) If ε2τ � s � t, then Wε(s, t) = Ŵε(s − ε2τ , t − ε2τ), and by (11),

�Wε(s, t)1ε2τ�s�t�2q � |t − s|1/2.

(c) If s � ε2τ � t, then Wε(s, t) = Wε(s, ε2τ) + Wε(ε2τ , t) and by (a) and (b),

�Wε(s, t)1s�ε2τ�t�2q � �Wε(s, ε2τ)1s�ε2τ�t�2q + �Wε(ε2τ , t)1s�ε2τ�t�2q � |t − s|1/2.

The bound (12) follows from the above.
The bound (13) is proved similarly, we consider the same three cases:

(a) Suppose that s � t � ε2τ . Observe that the variation of Wε on the interval (t, s) is 
O(ε−1|t − s|), and |Wε(s, r)| � ε−1|t − s| for s � r � t. Then

|Wε(s, t)| =
���
� t

s
Wε(s, r)⊗ dWε(r)

��� � ε−2|t − s|2 � τ |t − s|.

 Thus �Wε(s, t)1s�t�ε2τ�q � �τ�q|t − s| � |t − s|.
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(b) If ε2τ � s � t, then Wε(s, t) = Ŵε(s − ε2τ , t − ε2τ), so �Wε(s, t)1ε2τ�s�t�q � |t − s|
by (11).

(c) Suppose that s � ε2τ � t. It is convenient to use Chen’s relation

Wε(s, t)−Wε(s, ε2τ)−Wε(ε2τ , t) = Wε(s, ε2τ)⊗ Wε(ε2τ , t).

 Estimate

�Wε(s, ε2τ)1s�ε2τ�t�q � |t − s| by (a),

�Wε(ε2τ , t)1s�ε2τ�t�q � |t − s| by (b),

�Wε(s, ε2τ)⊗ Wε(ε2τ , t)1s�ε2τ�t�q � |t − s| by Hlder’s inequality and (12).

 The bound �Wε(s, t)1s�ε2τ�t�q � |t − s| follows.

The relation (13) follows. The proof is complete. □

Proposition 4.12. There exists C  >  0 such that for all t � 0,

(a)  
��Wε(t)− Ŵε(t)

�� � Cετ ,
(b)  

��Wε(t)− Ŵε(t)
�� � Cε2τ 2.

As a consequence, the processes (Wε,Wε) and (Ŵε, Ŵε) converge to the same limit in C0.

Proof. By construction of Wε(s, t) and Wε(s, t), for all 0 � s � t ,

|Wε(s, t)| � ε−1|t − s| and |Wε(s, t)| � ε−2|t − s|2.

Similar bounds hold for Ŵε and Ŵε. The result for t � ε2τ  follows directly from the above. 
Suppose that t � ε2τ . Then

��Wε(t + ε2τ)− Ŵε(t)
�� =

��Wε(ε2τ)
�� � ετ .

By Chen’s relation,
��Wε(t + ε2τ)− Ŵε(t)

�� =
��Wε(ε2τ) + Wε(ε2τ)⊗ Wε(ε2τ , t + ε2τ)

�� � ε2τ 2.

Similarly one shows that
��Wε(t)− Wε(t + ε2τ)

�� � ετ and
��Wε(t)−Wε(t + ε2τ)

�� � ε2τ 2.

The result follows. □

5. A heuristic analysis

In this section we give a heuristic derivation of our result based on studying directly the dis-
tribution function. This derivation works also for more general collision models, see [5]. To 
extend the present result to those models requires the analysis with noise that is not indepen-
dent from the slow variables. This is still a vastly unexplored area.
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As before, we consider only the distribution of velocities, which is independent of the posi-
tions, and the electric field is E = εn̂. Let p = ( p1, . . . , pN) denote velocities of the N particles 
and let Fε

t ( p) be the density of the velocity distribution at time t. From (1) we get

∂tFε
t ( p) +

�

i

∇pi

��
E −

�
k E · pk

U
pi

�
Fε

t ( p)
�

= λ
�

i

�

Sd−1

�
Fε

t ( p1, . . . , |pi|ω, . . . , pN)− Fε
t ( p)

�
dσ(ω),

where σ(ω) is the normalized volume measure on Sd−1. We write the above equation as

∂tFε
t + εBFε

t = AFε
t .

Rescaling time as �Fε
t (v) = Fε

t/ε2(v) and assuming that

�Fε
t ( p) = �F0

t ( p) + ε�F(1)
t ( p) + ε2�F(2)

t ( p) + o(ε2),

we get, collecting the coefficients of powers of ε,

0 = A�F0
t (14)

B�F0
t = A�F(1)

t (15)

�̇F0
t − B�F(1)

t = A�F(2)
t (16)

where the dot indicates differentiation with respect to t. From (14) it follows that �F0
t  depends 

only on vk while substituting (15) into (16) gives

�̇F0
t = P⊥BA−1B�F0

t , (17)

where P⊥ is the orthogonal projection from L2(SNd−1) to the kernel H0 of A. Observe that 
A−1B is well defined: the image of B is contained in H⊥

0 . Writing (17) explicitly gives

�̇F0
t (v) = −δ

�

i

∂

∂vi

��d − 1
2vi

− (Nd − 1)vi

U

�
�F0

t (v)
�
+

δ

2

�

i,j

∂2

∂vi∂vj

��
δi,j −

vivj

U

�
�F0

t (v)
�

, (18)

where δ = 2λ−1d−1. Equation (18) is the Master Equation for the SDE (2).
Let f ε,N

t ( p1) be the one particle marginal of Fε
t ( p),

f ε,N
t ( p1) =

�
Fε

t ( p1, p2, . . . , pN) dp2 · · · dpN .

In [3] it was shown that the limit

f εt ( p) = lim
N→∞

f ε,N
t ( p1)

satisfies the Boltzmann–Vlasov equation

ḟ εt ( p) +∇p

��
E − Ej(t)

U
p
�

f εt ( p)
�
= λ−1

�

Sd−1

�
f εt (|p|ω)− f εt ( p)

�
dσ(ω),

where j(t) is fixed by the self-consistent condition

j(t) =
�

Rd
pf εt ( p) dp.
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We can repeat the above scaling analysis by setting f̃ εt ( p) = f εt/ε2( p) and taking the van Hove 
limit

f̃ 0
t ( p) = lim

ε→0
f εt ( p).

A formal perturbative argument very similar to the one used for Fε
t ( p) gives that f̃ 0( p)

depends only on v = |p| and that it satisfies

˙̃f 0
t (v) = δ

d
dv

(vf̃ 0
t (v)) +

δ

2
d2

dv2 f̃ 0
t (v). (19)

In appendix B we show that for large N, the speed of an individual particle in (2) is close to an 
Ornstein–Uhlenbeck process whose Fokker–Planck equation is (19). Thus taking the van Hove 
scaling E → 0 and then the large system limit N → ∞ is, at least formally, equivalent to taking 
the large system limit before the van Hove scaling. In this sense the van Hove scaling studied in 
this paper is consistent, at least at a formal level, with the large N limit studied in [3].
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Appendix A. Continuity of solution map of differential equations

Suppose that x(t), 0 � t � 1, is a continuously differentiable path in R2, and that A : R2 → R2×2

is a smooth matrix-valued function. Let y  be a solution of an integral equation

y(t) =
� t

0
A(y(s)) dx(s). (A.1)

The integral above is understood in the Riemann–Stieltjes sense, and y  is uniquely defined.
Let Γ : C1([0, 1],R2]) → C0([0, 1],R2) be the solution map for (A.1). That is, Γ(x) = y.
It follows from Grönwall’s inequality that Γ is continuous. So, if a sequence xε converges 

to x0 in C1 topology as ε → 0, then the corresponding sequence yε = Γ(xε) converges to 
y0 = Γ(x0) in the C0 topology.

The domain of Γ can be extended to the space Cα of α-Hölder paths when α > 1/2. (Or 
alternatively to the space of paths of bounded p -variation with p   <  2.) In this case, the integral 
in (A.1) is a Young integral [18]. The map Γ is still continuous on Cα, see [17, theorem 1.28, 
[12, section 8.6].

But sample paths of Brownian motions are α-Hölder continuous only when α < 1/2, 
where it is problematic to extend Γ in a meaningful way. We illustrate a problem with continu-
ity of possible extensions of Γ by the following standard example.

Let

A :
�

a
b

�
�→

�
1 0
0 a

�
.
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Then y1 = x1 and y2(t) =
� t

0 x1(s)ẋ2(s) ds. Let xε, ε > 0, be sequence of smooth paths

xε(t) = ε

�
cos(ε−2t)
sin(ε−2t)

�
.

It is easy to see that xε converges to x0 ≡ 0 in α-Hölder topology for each α < 1/2 (but not 
for α � 1/2). For small ε,

yε(t) =
�

ε cos(ε−2t)� t
0 cos

2(ε−2s) ds

�
≈

�
0

t/2

�
.

Hence yε does not converge to y0 = Γ(x0) ≡ 0. Thus Γ cannot be extended to a continuous 
map on the space of α-Hölder paths, α < 1/2.

Remark A.1. In fact, there is no separable Banach space B ⊂ C0([0,∞),R2) such that:

 •  sample paths of Brownian motions lie in B almost surely,
• the map Γ, defined on smooth paths, extends to a continuous map Γ : B → C0([0,∞),R2).

See [15, 17] or [12, proposition 1.1] for details.

Appendix B. Projections of spherical diffusion

For each n � 1, suppose that W is a Brownian motion in Rn with identity covariance matrix. 
Define a stochastic process u in Rn as a solution of the Stratonovich differential equation

du = dW − u
u∗ ◦ dW

n
, u(0) = ξ.

We require that ξ belongs to the sphere S = {x ∈ Rn : |x| = n}. Then u is a diffusion on S.
We are interested in statistical behavior of the one dimensional projections of u, say the first 

coordinate u1, with large n. For the initial condition ξ, we fix ξ1 independent of n and choose 
ξj, j � 2, arbitrarily, deterministic or random independent of W.

Theorem B.1. As n → ∞, the process u1(t) converges weakly (in the uniform topology) to 
an Ornstein–Uhlnebeck process

dX = dB − 1
2

X dt, X(0) = ξ1,

where B is a standard 1D Brownian motion.

Proof. We write the stochastic differential equation for u in the Itô form [2, pages 137–138]:

du = dW − u
u∗ dW

n
− n − 1

2n
u dt.

Denote p   =  u1. Then

dp =
�

1 − p2

n

�
dW1 −

�
n − p2

n
dW � − n − 1

2n
p dt,

where W � is a standard 1D Brownian motion, independent from W1, which appears as
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dW � =

�
j�2 uj dWj��

j�2 u2
j

=

�
j�2 uj dWj�

n − p2
.

Let X be the Ornstein–Uhlenbeck process, dX = dW1 − 1
2 X dt , X(0) = ξ1. Let δ = p − X. 

Note that δ(0) = 0. We will show that δ(t) remains small for t � 0. Write

dδ =
−p2

n
dW1 −

�
n − p2

n
dW � − δ

2
dt +

p
2n

dt

=
1√
n

dW �� − δ

2
dt +

p
2n

dt,

where W �� is a standard Brownian motion. Another way of writing the above is

δ(t) =
1√
n

W ��(t) +
� t

0

p(s)
2n

ds − 1
2

� t

0
δ(s) ds.

By construction, |p| � √
n  at all times. Let

α(t) = |δ(t)| and β(t) =
|W ��(t)|√

n
+

t
2
√

n
.

Then

0 � α(t) � β(t) +
1
2

� t

0
α(s) ds.

By the Gronwall inequality [14, lemma 4.5.1],

α(t) � β(t) +
1
2

� t

0
e(t−s)/2β(s) ds �

�
1 +

tet

2

�
β̂(s),

where β̂(t) = maxs∈[0,t] β(s). Let also Ŵ ��(t) = maxs∈[0,t] |W ��(s)|. By Burkholder’s inequal-
ity, EŴ ��(t) � C

√
t, where C is an absolute constant. Thus Eβ̂(t) � C(

√
t + t)/

√
n .

We have shown that p = X + δ, where X is the required Ornstein–Uhlenbeck process, and 
E(sups�t |δ(s)|) � Ct/

√
n, where Ct  >  0 only depends on t. This implies our result. □ 
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