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Abstract
We study a model of random colliding particles interacting with an infinite reservoir at fixed
temperature and chemical potential. Interaction between the particles is modeled via a Kac
master equation (in: Kay, Proceedings of the Third Berkeley Symposium on Mathemati-
cal Statistics and Probability, 1954–1955, University of California Press, Berkeley and Los
Angeles, 1956). Moreover, particles can leave the system toward the reservoir or enter the
system from the reservoir. The system admits a unique steady state given by the Grand
Canonical Ensemble at temperature T = β−1 and chemical potential χ . We show that any
initial state converges exponentially fast to equilibrium by computing the spectral gap of the
generator in a suitable L2 space and by showing exponential decrease of the relative entropy
with respect to the steady state. We also show propagation of chaos and thus the validity of
a Boltzmann-Kac type equation for the particle density in the infinite system limit.

Keywords Kac model · Approach to equilibrium · Particle reservoir

1 Introduction

In 1955, Mark Kac [14] introduced a simple model to study the evolution of a dilute gas of N
particleswith unitmass undergoing pairwise collisions. Instead of following the deterministic
evolution of the particles until a collision takes place, he considered particles that collide at
random times with every particle undergoing, on average, a given number of collisions per
unit time. Moreover, when a collision takes place, the energy of the two particles is randomly
redistributed between them. In such a situation, one can neglect the position of the particles
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and focus on their velocities. To obtain a model as simple as possible, he considered particles
that move in one spatial dimension. This leads to an evolution governed by a master equation
for the probability distribution f (vN ), where vN ∈ R

N are the velocities of the particles.
Since collisions preserve the kinetic energy of the system, to obtain ergodicity one has
to restrict the evolution to vN ∈ S

N−1(
√
2eN ), that is on the surface of constant kinetic

energy with e the kinetic energy per particle. To further simplify the model, he neglected
the dependence of a particle collision rate on its speed, a situation sometime referred as
Maxwellian particles. In this setting, the dynamical properties of the evolution do not depend
on e and it is thus natural to set e = 1/2, see [14–16] for more details.

The study of the Kac master equation has been very useful to clarify and investigate
notions and conjectures arising from the kinetic theory of diluted gases. We refer the reader
to Kac’s original works [14] and [15] for extensive discussion.

Kac’s master equation also provides a natural setting to study approach to equilibrium. In
the case of the standardKacmodel [14], equilibrium is represented by the uniformdistribution
on the surface of given kinetic energy. Uniform convergence in the sense of the L2 gap was
conjectured by Kac and it was established in [13] while the gap was explicitly computed in
[5].

A more natural way to define approach to equilibrium is via the relative entropy. This
provides a better setting since the relative entropy, in general, grows only linearly with the
number of particles. There is no result of exponential decay of relative entropy with a rate that
is uniform in N for the original Kac model. Moreover, estimates of the entropy production
rate seem to point to a slow decay, at least for short times, see [7, 19].

In [4], the authors studied the evolution of a dilute gas of N particles brought to equilibrium
via a Maxwellian thermostat, i.e. an infinite heat reservoir at fixed temperature T = β−1.
The velocities of the particles in the system evolve according to the standard Kac collision
process described above. On top of this, particles in the system collide with particles in the
thermostat at randomly distributed times. In this way, the system and the reservoir exchange
energy, but there is no exchange of particles. In particular, the kinetic energy of the system is
nomore preserved. They proved that the system admits as a unique steady state the Canonical
Ensemble, i.e. in the steady state the probability distribution f (vN ) is the Maxwellian dis-
tribution at temperature T . Moreover, the steady state is approached exponentially fast and
uniformly in N , both in the sense of the spectral gap, in a suitable L2 space, and in the sense
of the relative entropy. In both cases, the rate of approach is determined by the interaction
with the thermostat while the rate of collision between particles in the system appears only
in the second spectral gap. They also adapted McKean’s proof [16] of propagation of chaos
and obtained a Boltzmann-Kac type effective equation for the evolution of the one particle
marginal in the limit N → ∞.

In the present work, we study a different way to bring the system to equilibrium. As in
[4], we study a system of N particles evolving through pair collisions and interacting with an
infinite reservoir at given temperature T ; however, the system and the reservoir are allowed
to exchange particles. The evolution of the the velocities of the particles in the system is again
described by a standard Kac collision process. On top of these, at random times a particle in
the system can leave it while, still at random times, a particle can enter the system from the
reservoir with its velocity distributed according to the Maxwellian at temperature T . Since
the reservoir is infinite, no particle can enter or leave the system more than once. Clearly, in
this new setting, energy and number of particles are not preserved. We show that this new
evolution admits as its unique steady state the Grand Canonical Ensemble. This means that,
in the steady state, the probability that the system contains N particles is given by a Poisson
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distribution while the probability distribution on the velocities, given the number of particles,
is the Maxwellian at temperature T .

We also study the approach to equilibrium in a suitable L2 space and in relative entropy. In
both cases, we show that the rate of approach is uniform in the average number of particles.
As in [4], the approach to equilibrium, both in L2 and in relative entropy, is driven by
the thermostat alone while the second spectral gap depends on the rate of binary particle
collisions. Finally, we look at the emergence of an effective evolution for the particle density
in the limit of a large system, that is when the average number of particles goes to infinity.
This requires some adaptation of the concept of propagation of chaos since the number of
particles in the system is not constant. Adapting the proof in [16], we show that the relative
particle density, defined in (19) and (22) below, satisfies a Boltzmann-Kac type of equation.

The rest of the paper is organized as follows. In Sect. 2, we present the model and state
our main results. Section 3 contains the proofs of our main results, while in Sect. 4 we report
some open problems and present possible areas of future work. Finally the appendix contains
the proofs of some technical Lemmas used in Sect. 3.

2 Model and Results

Since we want to describe a dilute gas with uniform density exchanging particles with an
infinite reservoir, it is natural to assume that, in a given time, each particle in the system has
the same probability of leaving it independently from the total number N of particles in the
system. This implies that the flow of particles from the system to the reservoir is proportional
to N . On the other hand, the probability of a particle to enter the system from the reservoir
depends only on the characteristics of the reservoir, and not on N , so that the flow of particles
in the system is independent from N . Finally, since the gas is dilute, given two particles in
the system, their probability of colliding in a given time does not depend on the total number
of particles in the system. Thus we expect the number of binary collisions in the system, in
a given time, to be proportional to

(N
2

)
. These are the main heuristic considerations that lead

to the formulation of our model to be introduced formally below.
We consider a system of particles in one space dimension interacting with an infinite

reservoir with which it exchanges particles. Since the number of particles in the system is
not constant, the phase space is given by R = ⋃∞

N=0 R
N , where R0 = {∅} represents the

state where no particle is in the system.
The evolution of the system is governed by three separate random processes. First, at

exponentially distributed times a particle is added to the system with a velocity randomly
chosen from a Maxwellian distribution at temperature T . To simplify notation we chose
T−1 = 2π . Second, also at exponentially distributed times, a particle is chosen at random to
exit the system and disappear forever with no chance of reentry. Finally, a pair of particles
in the system is selected at random to undergo a standard Kac collision.

More precisely, let L1
s (R) = ⊕∞

N=0 L
1
s (R

N ) be the Banach space of all states f =
( fN )∞N=0, with fN (vN ) symmetric under permutation of the vi , defined by the norm ‖f‖1 :=∑

N ‖ fN‖1,N , where ‖ fN‖1,N = ∫
dvN | fN (vN )|. We say that f is positive if fN (vN ) ≥ 0

for every N and almost every vN . If f is positive and ‖f‖1 = 1 then f is a probability
distribution on R. In this case, for N > 0, fN (vN ) represents the probability of finding N
particles in the system with velocities vN = (v1, . . . , vN ) while f0 ∈ R is the probability
that the system contains no particles.
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The master equation for the evolution is given by

d

dt
f = L[f] := μ(I[f] − f) + ρ(O[f] − N [f]) + λ̃K[f] (1)

where I is the in operator that represents the effect of introducing a particle into the system
and, after symmetrization, is given by

(If)N (v) = 1

N

N∑

i=1

e−πv2i fN−1(v1, . . . , vi−1, vi+1, . . . , vN ) (2)

while O is the out operator that represents the effect of a random particle leaving the system

(Of)N (v) =
N+1∑

i=1

∫
dw fN+1(v1, . . . , vi−1, w, vi , . . . , vN ) (3)

and

(N f)N (v) = N fN (v1, . . . , vN ) .

Observe that, due to the symmetry of fN+1, we can write

(Of)N (vN ) = (N + 1)
∫

dvN+1 fN+1(vN+1) .

We also define the thermostat operator T as

T := μ(I − Id) + ρ(O − N ) . (4)

These definitions imply that, in every time interval dt , there is a probability μdt of a particle
being added to the system. This probability is independent of the number of particles already
in the system. In the same time interval, every particle in the system has a probability ρdt
of leaving the system, which is, again, independent of the number of particles in the system.
Thus, as discussed at the beginning of this section, the outflow of particles is proportional to
N while the inflow does not depend on N .

Finally K represents the effect of the collisions among particles. It acts independently on
each of the N particles subspaces, that is it is (Kf)N = KN fN with

KN fN :=
∑

1≤i< j≤N

(Ri, j − Id) fN := QN fN −
(
N

2

)
fN (5)

where Ri, j represents the effect of a collision between particles i and j :

(Ri, j fN )(vN ) = 1

2π

∫
fN (. . . , vi cos θ − v j sin θ, . . . , vi sin θ + v j cos θ, . . . )dθ , (6)

that is, Ri, j fN is the average of fN over all rotations in the plane (vi , v j ). In this way, the
probability that two given particles suffer a collision in an interval dt is proportional to λ̃ and
does not depend on the number of particles in the system.

SinceL is a sumof unbounded operators that do not commute,wefirst need to show that (1)
defines an evolution on L1

s (R) and that such an evolution preserves probability distributions.
Observe that, notwithstanding L is unbounded, the operator LN f , defined by LN f := (Lf)N ,
is bounded as an operator from L1

s (R) to L1
s (R

N ) with ‖LN‖1,N ≤ 2μ+ (2N +1)ρ + λ̃N 2.
Thus we will take D1 = {f | ∑N N 2‖ fN‖1,N < ∞} as the domain of L. It is easy to see
that D1 is dense in L1

s (R).
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In Sect. 3.1 we will build a semigroup of continuous operators etL that solves (1) for
initial data f ∈ D1 and show that etL preserves probability distributions.

Lemma 1 There exists a semigroup of continuous operators etL such that if f ∈ D1 then
f(t) = etLf solves (1). For every f ∈ L1

s (R) we have

‖etLf‖1 ≤ ‖f‖1 .

Moreover, if f is positive then so is etLf and ‖etLf‖1 = ‖f‖1. Thus (1) generates an evolution
that preserves probability distributions.

Proof See Sect. 3.1. 
�
It is not hard to see that the evolution generated by (1) admits the steady state Γ given by

(Γ )N (vN ) =
(

μ

ρ

)N e− μ
ρ

N ! e−π |vN |2 := aNγN (vN ) (7)

where γN (vN ) = ∏N
i=1 γ (vi ), with γ (v) = e−πv2 , is the Maxwellian distribution with

β = 2π in dimension N while aN =
(

μ
ρ

)N
e− μ

ρ

N ! is a Poisson distribution on N. We observe

that Γ is a Grand Canonical Ensemble with temperature T = β−1 = 1/2π , chemical
potential χ = (2π)−1 log(ρ/μ), and average number of particles 〈NΓ 〉 = μ/ρ where

〈N f〉 :=
∞∑

N=0

N
∫

fN (vN )dvN .

In Sect. 3.1 we show that Γ is the unique steady state of the evolution generated by (1).
Finally, from a physical point of view, it is natural to consider only initial states with finite
average number of particles and average kinetic energy, that is probability distributions f
such that

〈N f〉 < ∞, and 〈Ef〉 :=
∞∑

N=0

1

2

∫ (∑

i

v2i
)
fN (vN )dvN < ∞ . (8)

Since the Kac collision operator K preserves energy and number of particles, we can derive
autonomous equations for the evolutions of N (t) = 〈N f(t)〉 and E(t) = 〈Ef(t)〉. Indeed, if
f is a probability distribution, we obtain

d

dt
N (t) = μ − ρN (t)

d

dt
E(t) = μ

2π
− ρE(t) (9)

so that, if (8) holds at time t = 0 it holds for every time t > 0. See Sect. 3.1 for a derivation
of these equations. Letting e(t) = E(t)/N (t), we get

d

dt
e(t) = μ

N (t)

(
1

2π
− e(t)

)
. (10)

Equation (10) looks like Newton law of cooling for a system like ours. Notwithstanding this,
e(t) is not the natural definition of temperature since it is not the average kinetic energy per
particle. A more interesting quantity is ẽ(t) = 〈v21f〉, but we were not able to obtain a closed
form expression for its evolution.
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As discussed in the introduction, we are interested in properties that are uniform in the
average number of particles in the steady state 〈NΓ 〉 = μ/ρ and eventually we want to
consider the situation where the average number of particles goes to infinity, that is μ/ρ →
∞. A classical way to take such a limit is to require that the collision rate between particles
decreases as the average number of particles increases in such a way that the average number
of collisions a given particle suffers in a given time is independent from μ/ρ, at least when
μ/ρ is large. This is achieved by setting

λ̃ = λ
ρ

μ
.

Observe that in this way, the scaling in N of KN in (5) differs from the scaling in the
standard Kac model. Notwithstanding this, they can both be thought as implementations of
the Grad-Boltzmann limit in the two different situations, see [11].

One way to study the approach of an initial state f toward Γ is by computing the spectral
gap of L. Since L is not self adjoint on L2

s (R) we perform a ground state transformation
setting

fN := aNγNhN . (11)

We will express (11) as f = Γ h. Inserting the above definition in (1) we get

d

dt
h = L̃h := ρ(P+h − Nh) + μ(P−h − h) + λ̃Kh

where we have set

(P+h)N =
N∑

i=1

hN−1(v1, . . . , vi−1, vi+1, . . . , vN )

(P−h)N = 1

N + 1

N+1∑

i=1

∫
dwe−πw2

hN+1(v1, . . . , vi−1, w, vi , . . . , vN )

In this representation, the steady state is given by the vector e0 such that (e0)N ≡ 1 for every
N . Thus L̃ is an unbounded operator on the Hilbert space

L2
s (R,Γ ) =

∞⊕

N=0

L2
s (R

N , aNγN (vN ))

of all states h = (h0, h1, h2, . . .) with hN (vN ) symmetric under permutations of the vi and
defined by the scalar product

(h1,h2) :=
∞∑

N=0

aN (h1,N , h2,N )N :=
∞∑

N=0

aN

∫
h1,N (vN )h2,N (vN )γN (vN )dvN .

As for L, defining L̃Mh = (Lh)M we get a bounded operator from L2
s (R,Γ ) to

L2
s (R

N , γN (vN )) so that, calling ‖hN‖2,N = (hN , hN )N , we can take

D2 = {
h
∣∣

∞∑

N=0

aN‖(L̃h)N‖2,N < ∞}

as the domain of L̃. The following Theorem shows that L̃ defines an evolution on L2
s (R,Γ ).
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Theorem 2 The generator L̃ is self adjoint and non-positive definite on L2
s (R,Γ ). Further-

more, if we define

Δ = sup{(h, L̃h) |h ∈ D2, ‖h‖2 = 1,h ⊥ E0}
where ‖h‖2 = (h,h) and E0 = span{e0}, we get

Δ = −ρ .

Moreover Δ is an eigenvalue and the associated eigenspace is E1 = span{e1, e(0,0,1)} with
e1 =

√
ρ
μ
P+e0 −

√
μ
ρ
e0 while

(e(0,0,1))N (vN ) =
√

ρ

2μ

N∑

i=1

(2πv2i − 1) .

Proof See Sect. 3.2. 
�
Due to the invariance of even, second degree polynomials under the Kac collision operator

K, Theorem 2 shows that the spectral gap of the generator L̃ is completely determined by the
presence of the reservoir. This is not surprising since all states h such that hN is rotationally
invariant for every N are in the null space of K.

As in [4], to see the effect of the Kac collision operator K, we have to look at the second
gap, defined as

Δ2 = sup{(h, L̃h) |h ∈ D2, ‖h‖2 = 1,h ⊥ E0 ⊕ E1} . (12)

Theorem 3 If

ρ >
λ

4
+ 2λ

√
ρ

μ
and

μ

ρ
> 256 (13)

we have

−ρ − λ

4
≤ Δ2 < −ρ − λ

4
+ 2λ

√
ρ

μ
.

Moreover Δ2 is an eigenvalue and the associated eigenspace is contained in the space of all
states h such that hN is an even, fourth degree polynomial.

Proof See Sect. 3.3. 
�
Since μ/ρ is the average number of particles in the steady state, the conditions in (13) are

not too restrictive.
It is possible to see that, as in the case of the standardKac evolution, the L2 norm discussed

above does not scale well with the average number of particles in the system and thus it is
not a good measure of distance from the steady state if μ/ρ is large. A better measure is the
entropy of a probability distribution f relative to the steady state Γ defined as

S(f | Γ ) =
∑

N

aN

∫
dvNhN (vN ) log hN (vN )γN (vN )

where, as before, f = Γ h and aN and γN are defined in (11).
As usual, it is easy to show using convexity that S(f | Γ ) ≥ 0, S(f | Γ ) = 0 if and only

if f = Γ . Moreover, from Lemma 1 and convexity, it follows that S(f(t) | Γ ) ≤ S(f | Γ )

where f(t) = etLf . In Sect. 3.4, we show that, thanks to the presence of the reservoir, the
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entropy production rate is strictly negative. More precisely, assuming that f = Γ h ∈ D1 and
Γ h logh ∈ D1 we essentially obtain that

d

dt
S(f(t) | Γ ) ≤ −ρS(f(t) | Γ ) . (14)

See Lemmas 19 and 20 in Sect. 3.4 below for a precise statement. Form (14) we obtain the
following Theorem.

Theorem 4 If f = hΓ ∈ D1 is a probability distribution such that Γ h logh ∈ D1 then

S(f(t) | Γ ) ≤ e−ρtS(f(0) | Γ ) . (15)

Proof See Sect. 3.4. 
�
As in the case of Theorem 2, convergence to equilibrium in entropy is completely domi-

nated by the presence of the thermostat, that is, Theorem 4 remains valid in the case λ̃ = 0
where there is no collision among the particles.

We can now discuss the validity of a Boltzmann-Kac type equation when the average
number of particles in the system goes to infinity. To follow the standard analysis in [16],
we have first to define what a chaotic sequence is in the present situation. It is natural to call
f = ( f0, f1, f2, . . .) a product state if it has the form

fN (vN ) = e−η ηN

N !
N∏

i=1

g(vi ) (16)

where g(v) is a probability density on R and η > 0 is the average number of particles. We
observe that for the state f in (16), we have

(
etT f

)
N = e−η(t) η(t)N

N !
N∏

i=1

g(vi , t) (17)

where T is defined in (4) and, calling l(v, t) = ρ
μ
η(t)g(v, t), we get

η(t) = e−ρtη + (1 − e−ρt )
μ

ρ

l(v, t) = e−ρt l(v) + (1 − e−ρt )γ (v) (18)

This implies that the thermostat preserves the product structure exactly. See Sect. 3.5 for a
derivation of (17) and (18).

Thus we call a sequence of states fn = ( fn,0, fn,1, fn,2, . . .) chaotic if it approaches the
structure (16) while the average number of particles 〈N fn〉 goes to infinity. More precisely,
let μn be a sequence such that limn→∞ μn = ∞ and define

F (k)
n (vk) =

(
ρ

μn

)k ∑

N≥k

N !
(N − k)!

∫
fn,N (vk, vN−k)dvN−k (19)

where the factor N !
(N−k)! accounts for the possibleways to choose the k particleswith velocities

vk . We also define

‖f‖(k)
1 =

∑

N≥k

N !
(N − k)! ‖ fN‖1,N (20)

so that ‖F (k)
n ‖1,k ≤

(
ρ
μn

)k ‖fn‖(k)
1 .
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Observe that, if fn is a product state of the form (16) with average number of particles ηn ,
that is if

fn,N (vN ) = e−ηn
ηN
n

N !
N∏

i=1

g(vi )

we get

F (k)
n (vk) =

(
ηnρ

μn

)k k∏

i=1

g(vi ) .

Thus the factor
(

ρ
μn

)k
in (19) assures that, at least in this case, if limn→∞ ηn/μn exists then

also limn→∞ F (k)
n exists.

To generalize these observations, we say that F (k)
n converges weakly to F (k) if, for any

continuous and bounded test function φk : Rk → R, we have

lim
n→∞

∫

Rk
F (k)
n (vk)φk(vk)dvk =

∫

Rk
F (k)(vk)φk(vk)dvk

and we write w-limn→∞F (k)
n = F (k). Given a sequence fn of probability distributions such

that

‖fn‖(r)
1 ≤ Mr

(
μn

ρ

)r

(21)

for some M > 0 and every n and r , we say that fn is chaotic (w.r.t. μn) if, for some F

w-lim
n→∞ F (1)

n = F (22)

while for every k > 1 we have
w-lim
n→∞ F (k)

n = F⊗k (23)

where F⊗k(vk) = ∏k
i=1 F(vi ). Observe that

∫
F(v)dv = lim

n→∞
〈N fn〉ρ

μn
(24)

so that we can see F(v) as the relative particle density.
In [14, 16] a sequence of probability distributions fn : Rn → R is said to be chaotic if,

calling

F̃ (k)
n (vk) =

∫
fn(vk, vn−k)dvn−k ,

we have

w-lim
n→∞ F̃ (1)

n = F̃ and w-lim
n→∞ F̃ (k)

n = F̃⊗k .

If we consider the sequence of states fn defined as

(fn)N =
{
fn n = N

0 n �= N

with the natural choice μn = nρ, since the number of particles in fn is exactly n, from (19)
we get F = F̃ and thus F (k) = F̃ (k). In this sense, (19) and (23) can be considered as a
generalization of the classical definition in [14].
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Let now

fn(t) = eLn t fn(0)

where Ln is given by (1) with μ = μn and

λ̃ = λ̃n = λ
ρ

μn
. (25)

In Sect. 3.6, we prove that eLn t propagates chaos in the sense that, if fn(0) forms a chaotic
sequence, then fn(t) also forms a chaotic sequence for every t . This gives the following
theorem.

Theorem 5 If fn(0) forms a chaotic sequence w.r.t. μn, with limn→∞ μn = ∞, then also
fn(t) forms a chaotic sequence for every t ≥ 0. Moreover the relative particle density

F(v, t) = w-lim
n→∞

ρ

μn

∞∑

N=1

N
∫

fn,N (v, vN−1, t)dvN−1

satisfies the Boltzmann-Kac type equation

d

dt
F(v, t) = −ρ(F(v, t) − γ (v))

+ λ

∫

R

dw

∫
dθ

2π
[F(v cos θ + w sin θ, t)

× F(−v sin θ + w cos θ, t) − F(w, t)F(v, t)] . (26)

Proof See Sect. 3.6. 
�

3 Proofs

3.1 Proof of Lemma 1

The results in this section are based on two observations. The first is that the collision
operatorK acts independently on each L1

s (R
N ) and thus preserves positivity and probability.

The second is that, due to the different scaling in N of the in and out operators, see (2) and (3),
for large N the outflow of particles dominates the inflow. Thus even if the initial probability
of having a number of particles much larger than the steady state average μ/ρ is high, this
probability will rapidly decrease toward its steady state value, see (34) and (46) below. In
particular this prevents probability from “leaking out at infinity”.

Wewill now construct a solution of (1) in three steps, starting fromK alone, using a partial
power series expansion, see (27) below, and then adding the out operatorO and finally the in
operator I, using a Duhamel style expansion, see (33) and (40) below. These expansions are
strongly inspired by the stochastic nature of the the evolution studied, see Remark 8 below
for more details.

It is natural to define
(
et λ̃Kf

)

N
= et λ̃KN fN where we can write

et λ̃KN fN = e−λ̃t(N2)
∞∑

n=0

λ̃ntnQn
N

n! fN . (27)
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Observing that

‖et λ̃KN fN − fN‖1,N ≤
(
1 − e−λ̃t(N2)

)
‖ fN‖1,N +

∥
∥
∥e−λ̃t(N2)

∞∑

n=1

λ̃ntnQn
N

n! fN
∥
∥
∥
1,N

≤ 2
(
1 − e−λ̃t(N2)

)
‖ fN‖1,N (28)

and using that from Dominated Convergence we get

lim
t→0+

∞∑

N=0

(
1 − e−λ̃t(N2)

)
‖ fN‖1,N = 0

we obtain that limt→0+ et λ̃Kf = f . Similarly, we get

1

t
‖et λ̃KN fN − fN − λ̃t KN fN‖1,N

≤ 1

t

(
e−λ̃t(N2) − 1 + λ̃t

(
N

2

))
‖ fN‖1,N +

(
1 − e−λ̃t(N2)

)
‖λ̃QN fN‖1,N

+ 1

t

∥∥∥e−λ̃t(N2)
∞∑

n=2

λ̃ntnQn
N

n! fN
∥∥∥
1,N

≤ 2

t

(
e−λ̃t(N2) − 1 + λ̃t

(
N

2

))
‖ fN‖1,N + λ̃

(
N

2

)(
1 − e−λ̃t(N2)

)
‖ fN‖1,N

so that, if f ∈ D1 then limt→0+
(
et λ̃Kf − f

)
/t = λ̃Kf . Since ‖et λ̃KN fN‖1,N ≤ ‖ fN‖1,N

we get ‖et λ̃Kf‖1 ≤ ‖f‖1. Moreover if fN is positive then also et λ̃KN fN is positive and
‖et λ̃KN fN‖1,N = ‖ fN‖1,N . Thus if f is positive then et λ̃Kf is positive and ‖et λ̃Kf‖1 = ‖f‖1.

Let now f(t) be a solution of

d

dt
f(t) = λ̃Kf(t) + ρ(O − N )f(t) (29)

with f(0) = f ∈ D1. If such a solution exists, it satisfies the Duhamel formula

fN (t) = e(λ̃KN−ρN )t fN + ρ

∫ t

0
e(λ̃KN−ρN )(t−s) (Of(s))N ds (30)

where the construction of e(λ̃K−ρN )t is analogous to that of eλ̃Kt . From (30) we get

‖ fN (t)‖1,N ≤ e−ρNt‖ fN‖1,N +
∫ t

0
e−ρN (t−s)ρ(N + 1) ‖ fN+1(s)‖1,N+1 ds (31)

where we have used that

‖(Of)N‖1,N = (N + 1)
∫ ∣∣∣∣

∫
fN+1(vN+1)dvN+1

∣∣∣∣ dvN ≤ (N + 1)‖ fN+1‖1,N+1 . (32)

Observe that, in (32), equality holds if and only if fN+1 is everywhere positive or everywhere
negative. To construct a solution of (29) we iterate (30) to define

Q(t)f = e(λ̃K−ρN )t f +
∞∑

n=1

∫

0<t1<...<tn<t

e(λ̃K−ρN )(t−tn)ρOe(λ̃K−ρN )(tn−tn−1)

· · · ρOe(λ̃K−ρN )t1 f dt1 · · · dtn (33)

123



7 Page 12 of 50 J. Beck, F. Bonetto

and then show that Q(t) is a semigroup of bounded operators and that f(t) = Q(t)f solves
(29) if f ∈ D1. Using (31) iteratively we get

∥
∥
∥(Q(t)f)N

∥
∥
∥
1,N

≤
∑

n≥0

e−ρNt (N + n)!
N !

∫

0<t1<···<tn<t

n∏

i=1

eρ(N+n−i)ti ρe−ρ(N+n−i+1)ti dt1 · · · dtn‖ fN+n‖1,N+n

= e−ρNt
∑

n≥0

(
N + n

N

)
(
1 − e−ρt)n ‖ fN+n‖1,N+n (34)

where, in the last identity, we have used that

ρn
∫

0≤t1≤···tn≤t

n∏

i=1

e−ρti dt1 · · · dtn = 1

n! (1 − e−ρt )n . (35)

After summing over N we get

‖Q(t)f‖1 ≤
∑

N≥0

∑

n≥0

(
N + n

N

)
e−ρNt (1 − e−ρt )n ‖ fN+n‖1,N+n = ‖f‖1 . (36)

so that ‖Q(t)‖1 ≤ 1. Observe also that, if f is positive thenQ(t)f is positive and ‖Q(t)f‖1 =
‖f‖1, see comment below (32). Conversely, if for some N , fN takes both positive and negative
values then ‖Q(t)f‖1 < ‖f‖1.

From (33), we see that Q(t1)Q(t2) = Q(t1 + t2) while, using (34) and (36), and the fact
that

N (N − 1)

(
M

N

)
= M(M − 1)

(
M − 2

N − 2

)

we get

∞∑

N=1

N 2
∥∥(Q(t)f)N

∥∥
1,N ≤ e−ρt

∞∑

N=1

N 2‖ fN‖1,N

so that Q(t)f ∈ D1 if f ∈ D1. Moreover observe that

‖Q(t)f − f‖1 ≤
∑

N≥0

∑

n≥1

(
N + n

N

)
e−ρNt (1 − e−ρt)n ‖ fN+n‖1,N+n

+
∥∥∥e(λ̃K−ρN )t f − f

∥∥∥
1

=
∑

N≥0

(
1 − e−ρNt

)
‖ fN‖1,N +

∥∥∥e(λ̃K−ρN )t f − f
∥∥∥
1

(37)

so that limt→0+ Q(t)f = f . Similarly we have

1

t
‖Q(t)f − f − t(λ̃K − ρ(O − N ))f‖1

≤ 1

t

∑

N≥0

∑

n≥2

(
N + n

N

)
e−ρNt (1 − e−ρt)n ‖ fN+n‖1,N+n

+ 1

t

∥∥∥e(λ̃K−ρN )t − f − t(λ̃K − ρN )f
∥∥∥
1
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+ ρ

t

∥
∥
∥
∥

∫ t

0
e(λ̃K−ρN )(t−s)Oe(λ̃K−ρN )s f − tOf

∥
∥
∥
∥
1

. (38)

If f ∈ D1, proceeding as in (37) we see that the second and third lines of the right hand side
of (38) vanish as t → 0+ while writing

∫ t

0
e(λ̃K−ρN )(t−s)Oe(λ̃K−ρN )sf − tOf =

∫ t

0
e(λ̃K−ρN )(t−s)O

(
e(λ̃K−ρN )sf − f

)

+
∫ t

0

(
e(λ̃K−ρN )(t−s)O − O

)
f (39)

and using (28) we see that also the last line of (38) vanish as t → 0+. This implies that,
for f ∈ D1, we have limt→0+ (Q(t)f − f) /t = λ̃Kf + ρ(O − N )f and we can write
Q(t) = et(λ̃K+ρ(O−N )).

We can now use a Duhamel style expansion once more to obtain

etLf = e(λ̃K+ρ(O−N )−μId)t f

+
∞∑

n=1

μn
∫

0<t1<...<tn<t

e(λ̃K+ρ(O−N )−μId)(t−tn)Ie(λ̃K+ρ(O−N )−μId)(tn−tn−1)

· · · Ie(λ̃K+ρ(O−N )−μId)t1 f dt1 · · · dtn (40)

that, thanks to the fact that I is bounded, converges for every f ∈ L1(R) to a solution of
d
dt f(t) = Lf(t). Lemma 1 follows easily observing that ‖If‖1 = ‖f‖1. 
�
Remark 6 The proof of Lemma 1 above also shows that given f ∈ L1(R), if for some N , fN
takes both positive and negative values, then ‖etLf‖1 < ‖f‖1.
Remark 7 From (30) it is not hard to see that, if fi (t) ∈ D1, i = 1, 2, are two solutions of
(1) with f1(0) = f2(0) then f1(t) = f2(t).

Remark 8 Observe that (1) is the master equation of a jump process where jumps occur when
two particles collide, a particle enters the system or a particle leaves it. Moreover, these jumps
arrive according to a Poisson process. The expansions (27), (33) and (40) combined can be
seen as a representation of the evolution of f as an integral over all possible realizations of
the jump process, sometime called jump or collision histories. A similar representation was
used in [2] to study the interaction of a Kac system with a large reservoir. Clearly, such a
representation is much more complex in the present situation then for the model studied in
[2]. Here the arrival rate for the jumps depends on the state of the system via the number of
particles N and goes to infinity as N increases.

Given a state f = ( f0, f1, . . .) we set f̄N = ∫
fN (vN )dvN . It is easy to see that

∫
(Of)N (vN )dvN = (N + 1) f̄N+1 ,

∫
(If)N (vN )dvN = f̄N−1 (41)

while
∫

(Kf)N (vN )dvN = 0 ,

so that we get

(Lf)0 = −μ f̄0 + ρ f̄1
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(Lf)N = −(Nρ + μ) f̄N + μ f̄N−1 + ρ(N + 1) f̄N+1 N > 0 . (42)

If Γ is a steady state, writing

Γ N = cN

(
μ

ρ

)N 1

N !
we see from (42) that cN = c0 for every N . Since

∑
N Γ N = 1 we get Γ N = aN , see (7).

This implies that if Γ and Γ ′ are two steady states then
∫

(ΓN (vN ) − Γ ′
N (vN ))dvN = 0

for every N . From Remark 6 it follows that, if Γ �= Γ ′ then ‖etL(Γ − Γ ′)‖1 < ‖Γ − Γ ′‖1.
Uniqueness of the steady state follows immediately.

We now prove a more general version of (9). For r ≥ 0 we define

Nr (f) =
∞∑

N=r

N !
(N − r)! f̄N . (43)

and, using (42), we get

d

dt
Nr (f) =

∞∑

N=r

N !
(N − r)!

(−(Nρ + μ) f̄N + μ f̄N−1 + ρ(N + 1) f̄N+1
)

= −ρr Nr (f) + μr Nr−1(f) (44)

that, for r = 1, would imply the first of (9) since for a probability distribution we have
N0(f) = 1. This argument is suggestive but only formal since we need to show that we can
exchange the sum with the derivative in the above derivation. Notwithstanding this, it shows
that for r = 0, if f ∈ D1 then

∞∑

N=0

(Lf)N = 0 . (45)

To prove (9) we proceed more directly using the expansions derived previously. Indeed
from (34) and (36) we get

Nr

(
et(λ̃K−ρN+ρO)f

)
=
∑

N≥r

∑

n≥0

N !
(N − r)!

(
N + n

N

)
e−ρNt (1 − e−ρt )n f̄N+n

= e−ρr t Nr (f) . (46)

Furthermore, using that Nr (If) = Nr (f) + r Nr−1(f), we get

Nr (f(t)) = Nr

(
et(λ̃K−ρN+ρO−μId)f(0) + μ

∫ t

0
e(t−s)(λ̃K−ρN+ρO−μId)If(s)ds

)

= e−(ρr+μ)t Nr (f(0)) + μ

∫ t

0
e−(ρr+μ)(t−s)Nr (f(s))ds

+ rμ
∫ t

0
e−(ρr+μ)(t−s)Nr−1(f(s))ds (47)

that gives

Nr (f(t)) = e−ρr t Nr (f(0)) + rμ
∫ t

0
e−ρr(t−s)Nr−1(f(s))ds . (48)
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For r = 1, if f(0) is a probability distribution, we get

N (t) = e−ρt N (0) + (1 − e−ρt )
μ

ρ

that proves the first of (9). We will need the following corollary in Sect. 3.6 below.

Corollary 9 Given a probability distribution f , assume that there exists M such that
|Nr (f(0))| ≤ Mr then we have

|Nr (f(t))| ≤ max

{
M,

μ

ρ

}r
(49)

for every t ≥ 0.

Proof Clearly (49) holds for r = 0 since N0(f(t)) = 1 for every t ≥ 0. Calling M1 =
max

{
M,

μ
ρ

}
, assume that |Nr−1(f(t))| ≤ Mr−1

1 . Form (48) we get

|Nr (f(t))| ≤ e−ρr t Mr + rμ
∫ t

0
e−ρr(t−s)Mr−1

1 ds

= e−ρr t Mr + μ

ρ
(1 − e−ρr t )Mr−1

1 ≤ max

{
Mr ,

μ

ρ
Mr−1

1

}
.

The corollary follows by induction on r . 
�
Let now

f̃N =
N∑

i=1

∫
v2i fN (vN )dvN

so that E(t) = ∑∞
N=1 f̃N and observe that

N∑

i=1

∫
v2i (Of)N (vN )dvN = N f̃N+1 .

N∑

i=1

∫
v2i (If)N (vN )dvN = f̃N−1 + 1

2π
f̄N−1

while

N∑

i=1

∫
v2i (Kf)N (vN )dvN = 0 .

Again proceeding formally we get

d

dt

∞∑

N=1

f̃N =
∞∑

N=1

(
−(Nρ + μ) f̃N + μ f̃N−1 + μ

2π
f̄N−1 + ρN f̃N+1

)

= μ

2π

∞∑

N=0

f̄N − ρ

∞∑

N=1

f̃N .

It is not hard to adapt this argument, together with (46) and (47), to prove the second of (9).
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3.2 Proof of Theorem 2

To prove Theorems 2 and 3, we will construct a basis of eigenvectors for the generator

G = ρ(P+ − N ) + μ(P− − Id)

of the evolution due to the thermostat on L2
s (R,Γ ). We start by defining

(P+(g)h)N (vN ) =
N∑

i=1

hN−1(v1, . . . , vi−1, vi+1, . . . , vN )g(vi )

(P−(g)h)N (vN ) = 1

N + 1

N+1∑

i=1

∫
dwe−πw2

g(w)hN+1(vN ,i (w)) (50)

with vN ,i (w) = (v1, . . . , vi−1, w, vi , . . . , vN ) and g ∈ L2(R, γ ). Moreover, we use the
convention that the sum over an empty set is 0 so that (P+(g)h)0 = 0 for every h. With this
notation, P+ and P− from the introduction are P+(1) and P−(1), respectively.

Lemma 10 We have
ρP+(g)∗ = μP−(g) (51)

so that G is self-adjoint.

Proof Proceeding as in the definition of D2, we take as domain of P±(g) the subspaces

D± = {
h
∣∣∣

∞∑

N=0

aN‖(P±(g)h)N‖22,N < ∞}
.

It is easy to see that D± are dense in L2(R,Γ ).
Calling viN = (v1, . . . , vi−1, vi+1, . . . , vN ) we get

(hN , (P+(g)j)N )N =
N∑

i=1

∫
dvNγN (vN )hN (vN ) jN−1(v

i
N )g(vi )

=
N∑

i=1

∫
dviNγN−1(v

i
N )

(∫
dvi e

−πv2i g(vi )hN (vN )

)
jN−1(v

i
N )

= N ((P−(g)h)N−1, jN−1)N−1 . (52)

Assume now that h is in the domain of P+(g)∗. This means that for every j in D+ we have

(P+(g)∗h, j) = (h,P+(g)j) .

Given M , choose j such that jN ≡ 0 if N �= M . For such a j we have j ∈ D+ and

ρaM ((P+(g)∗h)M , jM )M = ρ(P+(g)∗h, j) = ρ(h,P+(g)j)

= ρaM+1(hM+1, (P+(g)j)M+1)M+1 = μaM ((P−(g)h)M , jM )M

where the last equality follows from (52) and the fact that

ρNaN = μaN−1 . (53)

This implies that ρ(P+(g)∗h)M = μ(P−(g)h)M for every M thus proving (51). This
also implies that G is self adjoint. 
�
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To obtain convergence toward e0, we first need to show that G is non positive. This is the
content of the following Lemma.

Lemma 11 G is non positive and Gh = 0 if and only if h = ce0, where e0 is given by
e0N (vN ) = 1 for every N and vN .

Proof From (51), we get ρ(h,P+h) = μ(P−h,h) so that

(h,Gh) = 2ρ(h,P+h) − (h, (ρN + μ)h) (54)

Moreover we have

ρ(h,P+h) = ρ

∞∑

N=1

aN

∫
dvNγN (vN )hN (vN )

(
N∑

i=1

hN−1(v
i
N )

)

=
∞∑

N=1

[
N∑

i=1

∫
dvNγN (vN )

(√
ρaN hN (vN )

)
(√

μ

N
aN−1hN−1(v

i
N )

)]

≤
∞∑

N=1

N∑

i=1

[
1

2
ρaN

∫
dvNγN (vN )hN (vN )2 + 1

2

μ

N
aN−1

∫
dvNγN (vN )hN−1(v

i
N )2

]

=
∞∑

N=0

[
1

2
NρaN

∫
dvNγN (vN )hN (vN )2 + 1

2
μaN

∫
dvNγN (vN )hN (vN )2

]

= 1

2
(h, (ρN + μ)h) (55)

where we have used (53) to obtain the second line and that ab ≤ (a2 + b2)/2 in going from
the second to the third line of (55). Non positivity follows immediately from (54) and (55).
Furthermore, we see that the inequality at the end of the second line of (55) becomes an
equality if and only if:

√
ρaNhN (vN ) =

√
μ

N
aN−1hN−1(v

i
N )

or hN (vN ) = hN−1(v
i
N ) for every i and N which implies that hN ≡ h0. 
�

Our construction of the eigenvalues and eigenvectors of G is inspired by the construction
of the Fock space for a bosonic quantum field theory, see for example Chap. 6 of [17]. The
main observation is that the operators P±(g) defined in (50) have the form of the creation
and annihilation operators. Since the “ground state” of G is e0, as opposed to the state with
no particles n, see (64) below, we will introduce the operators R±(g), see (57) below, that
can be thought as quasi particle operators, that is operators that create and destroy excitations
above the ground state, see for example [1]. The proofs of the Lemmas in the remaining part
of this section should be familiar to readers with a background in QFT.

We start with the commutation relations of the operators P±(g) andN . Setting {A,B} =
AB − BA, we obtain the following Lemma.

Lemma 12 We have

{P+(g1),P−(g2)} = −(g1, g2)Id

{P+(g1),P+(g2)} = {P−(g1),P−(g2)} = 0

{N ,P±(g)} = ±P±(g)
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where

(g1, g2) =
∫

R

g1(w)g2(w)e−πw2
dw .

Proof We first observe that, due to the symmetry of hN , we have

(P−(g)h)N (vN ) =
∫

γ (vN+1)g(vN+1)hN+1(vN+1)dvN+1 := (P−
N (g)hN+1)(vN )

while

(P+(g)h)N (vN ) =
N∑

i=1

(P+
N ,i (g)hN−1)(vN )

where

(P+
N ,i (g)hN−1)(vN ) = hN−1(v1, . . . , vi−1, vi+1, . . . , vN )g(vi ) .

Thus we get

(P−(g1)P−(g2)h)N (vN ) = (P−
N (g1)P

−
N+1(g2)hN+2)(vN )

=
∫

γ (vN+1)γ (vN+2)g1(vN+1)g2(vN+2)

× hN+2(vN+2)dvN+1dvN+2

Using again that hN is symmetric we get {P−(g1),P−(g2)} = 0. Moreover, we have

P+
N ,i (g1)P

+
N−1, j (g2)hN−2(vN )

=
{
hN−2(v1, . . . , v j−1, v j+1, . . . , vi−1, vi+1, . . . , vN )g1(vi )g2(v j ) i > j

hN−2(v1, . . . , vi−1, vi+1, . . . , v j , v j+2, . . . , vN )g1(vi )g2(v j+1) i ≤ j

so that
{
P+
N ,i (g1)P

+
N−1, j (g2)hN−2 = P+

N , j (g2)P
+
N−1,i−1(g1)hN−2 i > j

P+
N ,i (g1)P

+
N−1, j (g2)hN−2 = P+

N , j+1(g2)P
+
N−1,i (g1)hN−2 i ≤ j .

Summing over i and j it follows that {P+(g1),P+(g2)} = 0.
Similarly we have

(P−
N (g1)P

+
N+1,N+1(g2)hN )(vN ) = hN (vN )

∫
g1(vN+1)g2(vN+1)γ (vN+1)dvN+1

while for i ≤ N we get

(P−
N (g1)P

+
N+1,i (g2)hN )(vN )

= g2(vi )
∫

hN (v1, . . . , vi−1, vi+1, . . . , vN+1)g1(vN+1)γ (vN+1)dvN+1

= (P+
N ,i (g2)P

−
N−1(g1)hN )(vN ) .

Summing over i we get {P+(g1),P−(g2)} = −(g1, g2)Id.
Finally we observe that

(P−(g)Nh)N = P−
N (g)(Nh)N+1 = (N + 1)(P−(g)h)N = ((N + Id)P+(g)h)N

so that {N ,P−(g)} = −P−(g). The commutation relation for P+ follows taking the
adjoint. 
�
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Observe that P−(g)e0 = (g, 1)e0 while from Lemma 12 it follows that

{G,P+(g)} = {P+(1),P+(g)} − ρ{N ,P+(g)} + μ{P−(1),P+(g)}
= −ρP+(q) + μ(1, g)Id (56)

that makes it natural to define the new creation and annihilation operators

R+(g) =
√

ρ

μ
P+(g) −

√
μ

ρ
(g, 1) Id

R−(g) =
√

μ

ρ
P−(g) −

√
μ

ρ
(g, 1) Id . (57)

The following Corollary collects the relevant properties of R±(g).

Corollary 13 We have R+(g)∗ = R−(g), R−(g)e0 = 0, and

{R+(g1),R−(g2)} = −(g1, g2)Id

{R+(g1),R+(g2)} = {R−(g1),R−(g2)} = 0

{N ,R±(g)} = ±
(
R±(g) +

√
μ

ρ
(g, 1)Id

)

Moreover we also have

{G,R+(g)} = −ρR+(g) , {G,R−(g)} = ρR−(g) . (58)

Proof It is easy to verify that R−(g)e0 = 0. Moreover we only need to prove (58) since the
other relations are immediate consequences of Lemma 12. From (56) we get

{G,R+(g)} =
√

ρ

μ
{G,P+(g)} = −ρ

√
ρ

μ
P+(g) + √

μρ(g, 1)Id = −ρR+(g)

The second equation of (58) follows by taking the adjoint of the first. 
�
Since KN preserves the space of polynomials of a given degree, see [4], we choose as an

orthonormal basis for L2(R, γ (v)) the polynomials

Ln(v) = 1√
n!Hn(

√
2πv) (59)

where

Hn(v) = (−1)ne
v2
2

dn

dvn
e

−v2
2

are the standard Hermite polynomials. For every sequence α = (α0, α1, α2, . . .) such that
αi ∈ N and λ(α) := ∑∞

i=0 αi < ∞, we define

eα =
∞∏

i=0

(R+
i )αi√
αi ! e0 (60)

where R±
n = R±(Ln).

Lemma 14 The vectors eα form an orthonormal basis in L2
s (R,Γ ). Moreover, we have

Geα = −ρλ(α)eα . (61)

Finally we have ‖Keα‖2 < ∞, so that eα ∈ D2, for every α.

123



7 Page 20 of 50 J. Beck, F. Bonetto

Proof If n1 �= n2 and α1α2 �= 0, using Corollary 13 we get

((R+
n1)

α1e0, (R+
n2)

α2e0) = (e0, (R+
n2)

α2(R−
n1)

α1e0) = 0

while

((R+
n )α1e0, (R+

n )α2e0) = ((R+
n )α1−1e0,R−

n (R+
n )α2e0)

= ((R+
n )α1−1e0,R+

n R−
n (R+

n )α2−1e0)

+ ((R+
n )α1−1e0, (R+

n )α2−1e0)

...

= ((R+
n )α1−1e0, (R+

n )α2R−
n e

0)

+ α2((R+
n )α1−1e0, (R+

n )α2−1e0)

= α2((R+
n )α1−1e0, (R+

n )α2−1e0) .

Assuming α1 ≥ α2 we get

((R+
n )α1e0, (R+

n )α2e0) = α2!((R+
n )α1−α2e0, e0) (62)

so that
((R+

n )α1e0, (R+
n )α2e0) = α1!δα1,α2

from which orthonormality follows easily. Observe now that

((P+(1))ne0)N =
{
0 N < n

N !
(N−n)! N ≥ n

(63)

so that we can write

n =
∞∑

n=0

(−1)n

n! (P+(1))ne0 (64)

where n = (1, 0, 0, . . .). Since P+(1) =
√

ρ
μ
R+

0 +
√

μ
ρ
Id we see that n is in the closure

of the span of the eα . Calling P+
i = P+(Li ), we observe that (P+

i n)N = 0 for N �= 1
while (P+

i n)1 = Li . Since the Li form a basis for L2(R, γ1) we see that the closure of the
span of {n;P+

i n, i ≥ 0} contains a basis for L2
s (R

0, a0) ⊕ L2
s (R, a1γ1). Observe now that

P+
i =

√
μ
ρ
R+

i + δi,0
μ
ρ
Id and that R+

i eα = √
αi + 1eα′ , where α′

j = α j for j �= i while

α′
i = αi + 1. Combining this with (64) we get that the closure of the span of the eα contains

P+
i n and thus it contains a basis for L2

s (R
0) ⊕ L2

s (R, a1γ1). Iterating this construction we
obtain completeness. Equation (61) follows easily from (58).

Finally, since (hN , Ri, j hN )N ≤ ‖hn‖2,N , from (5) we get

‖Kh‖22 ≤
∞∑

N=0

aN N
4‖h‖22,N = ‖N 2h‖22 .

Using the commutation relations in Corollary 13 as in the derivation of (62) we get

N
(
R+

n

)α = (
R+

n

)α N + α
(
R+

n

)α + δn,0α

√
μ

ρ

(
R+

n

)α−1
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that, together with N e0 =
√

μ
ρ
R+

0 e
0 + μ

ρ
e0, gives

N eα =
(

λ(α) + μ

ρ

)
eα +

√
μ

ρ
(
√

α0eα− +√
α0 + 1eα+)

where α±
i = αi , for i > 0, while α±

0 = α0 ± 1. Thus we have ‖N 2eα‖2 < ∞ and the proof
is complete. 
�

In Sect. 3.3 we will need a more explicit representation of the eα . To this end observe that,

if n �= 0, (R+
n e

0)N (vN ) =
√

ρ
μ

∑N
i=1 Ln(vi ) while for n1, n2 �= 0 and N ≥ 2 we can write

(R+
n1R

+
n2e

0)N (vN ) = ρ

μ

∑

i �= j

Ln1(vi )Ln2(v j ) = 1

(N − 2)!
ρ

μ

∑

π∈Sym(N )

Ln1(vπ(1))Ln2(vπ(2))

where Sym(N ) is the group of permutations on {1, . . . , N }. More generally, given ni �= 0,
i = 1, . . . , M , we get, for N ≥ M ,

(
M∏

i=1

R+
ni e

0

)

N

(vN ) = 1

(N − M)!
(

ρ

μ

) M
2 ∑

π∈Sym(N )

M∏

i=1

Lni (vπ(i)) . (65)

while
(∏M

i=1 R+
ni e

0
)

N
≡ 0 for N < M . Given α with λ(α) < ∞, define

Lα =
∞⊗

i=1

L⊗αi
i

where L⊗0
i = 1 and observe that Lα is a polynomial in λ0(α) := ∑∞

i=1 αi variables with
degree d(α) := ∑∞

i=1 iαi . Also for π ∈ Sym(N ), define π(vN ) = (vπ(1), vπ(2), . . . vπ(N )).

Using these definitions, together with (60) and the fact that R+
0 =

√
ρ
μ
P+(1) +

√
μ
ρ
Id we

can write, for N ≥ λ0(α),

(eα)N (vN ) = cα,N

∑

π∈Sym(N )

Lα(π(vN )) , (66)

for suitable coefficients cα,N , while (eα)N (vN ) = 0 for N < λ0(α).
We now come back to the full operator L̃.

Corollary 15 The operator L̃ is self-adjoint, non positive and L̃h = 0 if and only if h = ce0.

Proof We can proceed exactly as in proof of Lemma 10. Assume that h is in the domain of
L̃∗. This means that for every j in D2 we have

(L̃∗h, j) = (h, L̃j) .

Given M , choose j such that jN ≡ 0 if N �= M . Clearly j ∈ D2 because (L̃j)N �= 0 only
for N = M − 1, M , and M + 1. Moreover (Kh, j) = aM (KMhM , jM )M is well defined for
every h ∈ L2

s (R,Γ ). Finally we known that KM is non negative and self-adjoint for every
M . Thus we get

aM ((L̃∗h)M , jM )M = ((L̃∗h, j) = (h, L̃j) = (h,Gj) + λ̃aM (hM , KM jM )M

= aM ((Gh)M , jM ) + λ̃aM (KMhM , jM )M = aM ((L̃h)M , jM )M .
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This implies that (L̃∗h)M = (L̃h)M for every M . This proves that L̃ is self-adjoint. Observe
also that Gh = 0 if and only if h = ce0, see Lemma 11, while K is positive and Ke0 = 0.
This completes the proof. 
�

Let W1 = span{eα | λ(α) = 1} = span{R+
n e

0 | n ≥ 0}. Observe that Gh = −ρh if
h ∈ W1 while (h,Gh) < −ρ(h,h) if h ∈ D2, h ⊥ e0 but h /∈ W1. Thus we get

Δ ≤ −ρ + sup{(h,Kh) |h ∈ D2, ‖h‖2 = 1,h ⊥ E0} ≤ −æ

From [4] we know that ( fN , KN fN ) ≤ 0 for every fN while ( fN , KN fN ) = 0 if and only
if fN is rotationally invariant. Since (R+

n e
0)N = √

ρ/μ
∑N

i=1 Ln(vi ), for n > 0, while
(R+

0 e
0)N = √

ρ/μN − √
μ/ρ we have that R+

n e
0 is rotationally invariant if and only if

n = 0 or n = 2. This implies that (h, L̃h) = −ρ‖h‖2 if and only if h ∈ span{R+
0 e

0,R+
2 e

0}.
Since R+

0 e
0 = e(1,0,...) and R+

2 e
0 = e(0,0,1,0,...), this completes the proof of Theorem 2. 
�

3.3 Proof of Theorem 3

To prove Theorem 3, we need more information on the action of K on the basis vectors eα .
As a basic step, we compute the action of R1,2, see (6), on the product of two Hermite

polynomials in v1 and v2. A simple calculation, see e.g. [4], shows that (R1,2F)(v1, v2) = 0
for every F odd in v1 or v2. Thus, calling H(m1,m2)(v1, v2) = Hm1(v1)Hm2(v2), it follows that
R1,2H(m1,m2) �= 0 if and only ifm1 andm2 are both evenwhile R1,2H(2n1,2n2) is a rotationally
invariant polynomial of degree 2(n1 + n2) in v1 and v2. Moreover, if m1 +m2 < 2n1 + 2n2,
we get

∫
H(m1,m2)(v1, v2)

(
R1,2H(2n1,2n2)

)
(v1, v2)γ (v1)γ (v2)dv1dv2

=
∫ (

R1,2H(m1,m2)

)
(v1, v2)H(2n1,2n2)(v1, v2)γ (v1)γ (v2)dv1dv2 = 0

where we have used that H(2n1,2n2) is orthogonal to any polynomial of degree less that
2(n1 +n2). Thus we have R1,2H(2n1,2n2) ∈ span{H(p1,p2) | p1 + p2 = 2n1 +2n2} and, since
Hn is a monic polynomial of degree n, we can write

R1,2H(2n1,2n2) =
n1+n2∑

k=0

ak,n1,n2H(2k,2(n1+n2−k)) =
n1+n2∑

k=0

ak,n1,n2v
2k
1 v

2(n1+n2−k)
2 + Q

for suitable coefficients ak,n1,n2 and polynomial Q(v1, v2) of degree strictly less then 2(n1 +
n2). This, together with rotational invariance, implies that

R1,2H(2n1,2n2) = τ̃n1,n2

n1+n2∑

k=0

(
n1 + n2

k

)
H(2k,2(n1+n2−k)) (67)

for suitable coefficients τ̃n,m . Using (67), together with (66), it is possible to give an explicit
representation of K on the basis of the eα . For the purpose of this paper, we will only need
some particular cases discussed in detail below.

Let now Vm = span{eα|∑∞
i=1 iαi = m} = span{∏i (R

+
i )αi e0|∑∞

i=1 iαi = m}, that is
Vm is the subspace of all states h such that hN is a polynomial of degree m orthogonal to all
polynomials of degree less than m. From the above considerations and (66) it follows that
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KVm ⊂ Vm so that defining

δm = inf
h∈Vm∩D2

‖h‖2=1, h⊥E1⊕E0

(h,−L̃h) . (68)

and observing that L2
s (R,Γ ) = ⊕∞

m=0 Vm , we get Δ2 = − infm δm .
Since E1 = span{R+

0 e
0,R+

2 e
0}, we get

V0 ∩ (E1 ⊕ E0)
⊥ = span{(R+

0 )ne0, n ≥ 2}
V2 ∩ (E1 ⊕ E0)

⊥ = span{(R+
0 )nR+

2 e
0, n ≥ 1; (R+

0 )m(R+
1 )2e0,m ≥ 0} .

Observing that K(R+
0 )ne0 = K(R+

0 )nR+
2 e

0 = 0, due to rotational invariance, while
K(R+

0 )m(R+
1 )2e0 = 0, due to parity, we obtain δ0 = δ2 = 2ρ. Moreover we have that,

for m �= 0, 2, Vm ⊥ E1 ⊕ E0. Thus we need a lower bound on δm for m odd and for m even
and greater than 2.

Observe that (R+
me

0,GR+
me

0) = −ρ while (h,Gh) ≤ −2ρ(h,h) if h ∈ Vm and h ⊥
R+

me
0. Thus, if λ is not too big, it is natural to search for the infimum of (h,−L̃h) on Vm

looking at states h close to R+
me

0. To do this, we need the representation of KR+
me

0 on the
basis formed by the eα . If m = 2n, using (67) for n2 = 0 we get

R1,2H(2n,0) = τn

n∑

k=0

(
n

k

)
H(2k,2(n−k)) (69)

where τn = τ̃n,0. To compute τn we compare the coefficients of v2n1 on the left and right
hand side of (69). On the left hand side the only contribution comes from R1,2v

2n
1 since R1,2

preserve the degree. On the right hand side only the term with k = n contains the monomial
v2n1 . Since the Hn are monic and

R1,2v
2n
1 =

∫ 2π

0
(v1 cos θ − v2 sin θ)2n

dθ

2π
= (v21 + v22)

n
∫ 2π

0
cos2n θ

dθ

2π
,

and we obtain

τn =
∫ 2π

0
cos2n θ

dθ

2π
= 1

4n

(
2n

n

)
.

Combining with (59) we get

Ri, j L2n(vi ) = τn

n∑

k=0

(
n

k

)√
(2k)![2(n − k)]!√

(2n)! L2k(vi )L2(n−k)(v j ) .

Since for n > 0 we have (R+
2ne

0)N = √
ρ/μ

∑N
i=1 L2n(vi ), a direct computation shows that

(KR+
2ne

0)N =
√

ρ

μ
(N − 1)(2τn − 1)

N∑

i=1

L2n(vi )

+
√

ρ

μ

n−1∑

k=1

∑

i �= j

σn,k L2k(vi )L2(n−k)(v j )

where

σn,k = τn

(n
k

)

√(2n
2k

) = √
τnτkτn−k . (70)
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This gives us

KR+
2ne

0 = (2τn − 1)R+
2nN e0 +

√
μ

ρ

n−1∑

k=1

σn,kR+
2kR

+
2(n−k)e

0

= μ

ρ
(2τn − 1)R+

2ne
0 +

√
μ

ρ
(2τn − 1)R+

0 R
+
2ne

0

+
√

μ

ρ

n−1∑

k=1

σn,kR+
2kR

+
2(n−k)e

0 (71)

where we have used that N e0 =
√

μ
ρ
R+

0 e
0 + μ

ρ
e0.

If m = 2n + 1, R1,2H2n+1(v1) = 0 gives

KR+
2n+1e

0 = −μ

ρ
R+

2n+1e
0 −

√
μ

ρ
R+

0 R
+
2n+1e

0 . (72)

From (71) and (72) we get

λ̃(R+
2ne

0,KR+
2ne

0) = −λ(1 − 2τn) , λ̃(R+
2n+1e

0,KR+
2n+1e

0) = −λ

so that δ2n ≤ ρ + λ(1 − 2τn) and δ2n+1 ≤ ρ + λ.
The following Lemma shows that, if the average number of particles in the steady state

is large enough and λ is not too large, one can find a lower bound for δm close to the upper
bound derived above.

Lemma 16 For m = 2n + 1 we have

δ2n+1 ≥ min

{
ρ + λ − λ

√
ρ

μ
, 2ρ − λ

√
ρ

μ

}
(73)

while for m = 2n, n > 1, we have

δ2n ≥ min

{
ρ + (1 − 2τn)λ − 2λ

√
ρ

μ
, 2ρ − 2λ

√
ρ

μ

}
. (74)

Proof See Appendix A.1. 
�
Since τ2 = 3/8 and (R4e0,−L̃R4e0) = ρ + λ/4, we get

ρ + λ

4
− 2λ

√
ρ

μ
< δ4 ≤ ρ + λ/4.

Moreover, thanks to (13),

2ρ − λ

√
ρ

μ
> ρ + λ

4
, ρ + λ − λ

√
ρ

μ
> ρ + λ

4

so that δ2n+1 > δ4 for every n. Finally we observe that τn+1 < τn and τ3 = 5/16. Using (13)
again it follows that, for n ≥ 3,

δ2n ≥ min

{
2ρ − 2λ

√
ρ

μ
, (1 − 2τ3)λ + ρ − 2λ

√
ρ

μ

}
> ρ + λ

4
≥ δ4

so that Δ2 = −δ4.
To show that Δ2 is an eigenvalue, we need to construct an eigenstate, that is we need to

find ĥ ∈ V4 such that L̃ĥ = −δ4ĥ. To this end, it is enough to show that there exists ĥ ∈ V4
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such that (ĥ, L̃ĥ) = −δ4(ĥ, ĥ). Observe that if h ∈ V4 then Kh is even. We thus restrict our
search to ĥ ∈ Ve

4 = span{(R+
0 )kR+

4 e
0, (R+

0 )k(R+
2 )2e0; k ≥ 0}.

Consider a sequence hn ∈ Ve
4 such that ‖hn‖2 = 1 and limn→∞(hn,−L̃hn) = δ4. Calling

Ve
4,k = span{(R+

0 )k−1R+
4 e

0, (R+
0 )k−2(R+

2 )2e0} for k > 2, while Ve
4,1 = span{R+

4 e
0}, we

can write hn = ∑∞
k=0 hn,k with hn,k ∈ Ve

4,k and we can find a subsequence h0n of hn
such that limn→∞ hn,0 = ĥ0. Similarly we can find a new subsequence h1n of h0n such that
limn→∞ hn,1 = ĥ1. Proceeding like this we find a sequence h∞

n such that limn→∞ h∞
n,k = ĥk ,

for every k. Analogously, since hn,N is an even polynomial of degree 4 in vN we can assume,
possibly at the cost of further extracting a subsequence, that limn→∞ h∞

n,N = ĥN for every

N . From Fatou’s Lemma we get that limn→∞ h∞
n = ĥ with ‖ĥ‖2 ≤ 1 while

(ĥ,−Gĥ) = ρ

∞∑

k=1

k‖ĥk‖2 ≤ lim inf
n→∞ ρ

∞∑

k=1

k‖hn,k‖2 = lim inf
n→∞ (h∞

n ,−Gh∞
n )

and analogously, since KN is non positive,

(ĥ,−Kĥ) =
∞∑

N=0

(ĥN ,−KN ĥN )N ≤ lim inf
n→∞

∞∑

N=0

(h∞
n,N ,−KNh

∞
n,N )N

≤ lim inf
n→∞ (h∞

n ,−Kh∞
n )

so that

(ĥ,−L̃ĥ) ≤ lim inf
n→∞ (h∞

n ,−L̃h∞
n ) = δ4

while (ĥ,−L̃ĥ) ≥ δ4‖ĥ‖2 since ĥ ∈ Ve
4. Thus we need to show that ‖ĥ‖2 = 1.

To this end observe that for every M > 0 we have

ρM
∞∑

k=M+1

‖hn,k‖22 ≤ ρ

∞∑

k=1

k‖hn,k‖22 = (hn,−Ghn) ≤ (hn,−L̃hn) ≤ 2δ4

eventually in n. Thus, for every ε there existsM such that
∑M

k=0 ‖hn,k‖22 ≥ 1−ε eventually in
n. Taking the limit this implies that for every ε there exists M such that

∑M
k=0 ‖ĥk‖22 ≥ 1− ε

and thus we get ‖ĥ‖ = 1. This concludes the proof of Theorem 3. 
�

3.4 Proof of Theorem 4

To simplify notation, given f = hΓ , we set S(h) = S(f | Γ ) and we define

Ψ (h) =
∞∑

N=0

aN

∫
dvN+1(hN+1 − hN )(log hN+1 − log hN )γN+1(vN+1)

E(h) =
∞∑

N=0

aN

∫
dvNhN (vN )γN (vN ).

Finally we observe that if f ∈ L1
s (R) then h ∈ L1

s (R,Γ ) and eLt f = (eL̃th)Γ with
L̃ = G + λ̃K defined in Sect. 3.2 but now considered as an operator on L1

s (R,Γ ).

To obtain an explicit expression for d
dt S(h(t)), where h(t) = eL̃thwe need to interchange

the order of the derivative in t with the sum over N and the integral over vN . To do this we
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will use the following two Lemmas that will allow us to use Fatou’s Lemma to excahnge
derivative and integrals.

Lemma 17 Given f ∈ L1(R) we have

lim
t→0+

((
eLt f

)
N (vN ) − fN (vN )

) = 0

lim
t→0+

1

t

((
eLt f

)
N (vN ) − fN (vN )

) = (Lf)N (vN )

for every N and almost every vN .

Proof See Appendix A.2. 
�
Lemma 18 If hΓ ∈ L1

s (R) then

hN (t) log(hN (t)) ≤
(
eL̃t (h logh)

)

N
.

Proof See Appendix A.3. 
�
After setting

d+
dt

S(h(t)) := lim sup
h→0+

1

h
(S(h(t + h)) − S(h(t))) ,

we are ready to estimate of the variation in time of S(h).

Lemma 19 Let h be such that hΓ ∈ D1 and h loghΓ ∈ D1 then we have

d+
dt

S(h(t)) ≤ −μΨ (h(t)) .

Proof From Lemma 18 we get
1

t

(
hN (vN , t) log(hN (vN , t)) − hN (vN ) log(hN (vN ))

)

− 1

t

((
eL̃t (h log h)

)

N
(vN ) − hN (vN ) log(hN (vN ))

)
≤ 0 .

Since h loghΓ ∈ L1(R), conservation of probability gives

∞∑

N=0

aN

∫

RN

((
eL̃t (h log h)

)

N
(vN )γN (vN ) − hN (vN ) log(hN (vN ))γN (vN )

)
dvN = 0

so that by Fatou’s Lemma

lim sup
t→0+

1

t
(S(h(t)) − S(h))

≤
∞∑

N=0

aN

∫

RN
lim sup
t→0+

1

t

(
hN (vN , t) log(hN (vN , t)) − hN (vN ) log(hN (vN ))

)

−
∞∑

N=0

aN

∫

RN
lim sup
t→0+

1

t

((
eL̃t (h logh)

)

N
(vN ) − hN (vN ) log(hN (vN ))

)

and, using Lemma 17, we get

lim sup
t→0+

1

t
(S(h(t)) − S(h)) ≤

∞∑

N=0

aN

∫

RN
(L̃h)N (vN )(log(hN (vN )) + 1)γN (vN )dvN
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−
∞∑

N=0

aN

∫

RN

(
L̃(h log h)

)
N (vN )γN (vN )dvN .

Since Γ h ∈ D1 and Γ h logh ∈ D1, (45) gives

d+
dt

S(h(t))
∣
∣
t=0 ≤

∞∑

N=0

aN

∫
dvNγN (L̃h)N log(hN )

=
∞∑

N=0

aN

∫
dvNγN

(
ρ(P+h)N + μ(P−h)N

−(μ + ρN )hN + λ̃KNhN

)
log hN

≤
∞∑

N=0

aN

∫
dvNγN

(
ρ(P+h)N + μ(P−h)N − (μ + ρN )hN

)
log hN

where we have used that
∫
dvNγN (KNhN ) log hN ≤ 0. Observe finally that

∫
dvNγNρ(P+h)N log hN =

∫
dvNγN NρhN−1 log hN

∫
dvNγNμ(P−h)N log hN =

∫
dvN+1γN+1μhN+1 log hN

from which we get

d+
dt

S(h(t))
∣∣
t=0 ≤

∞∑

N=1

aN

∫
dvNγN Nρ(h̃N−1(t) − h̃N (t)) log h̃N (t)

+ μ

∞∑

N=0

aN

∫
dvN+1γN+1(h̃N+1(t) − h̃N (t)) log h̃N (t)

The thesis follows by reindexing the first sum and using (53). 
�
Thus to show that S(h(t)) decays exponentially we need a lower bound for Ψ (h) in terms

of S(h). This is the content of the following Lemma that is the main result of this section.

Lemma 20 If Γ h ∈ L1
s (R) with S(h) < ∞, then

S(h) ≤ E(h) log E(h) + μ

ρ
Ψ (h) . (75)

Remark 21 The idea behind the proof of (75) is to think of the entry and exit processes defined
by the thermostat as a continuous family of independent entry processes, one for each possible
velocity v, with entry rates μγ (v)dv, while each particle in the system leaves with rate ρ

independent of its velocity. Clearly such a description makes little mathematical sense and,
as a first step, one may think of approximating the original process by restricting the velocity
of each particle to assume only a finite number of values v̄k , k = 1, . . . , K , characterized
by suitable entry rates ωk . After this, using convexity, we reduce the proof of (75) to the
case with K = 1, essentially equivalent to the case in which all particles in the thermostat
have the same velocity. In this situation, we further approximate the infinite reservoir by a
large finite reservoir containing M particles that enter and leave the system, independently
from each other, at a suitable rate. Convexity will allow us to reduce this situation to that of
a single particle jumping from the system to the reservoir and back. The final step is thus

123



7 Page 28 of 50 J. Beck, F. Bonetto

Lemma 25 below that deals with this situation. This argument is inspired by the proof of the
Logarithmic Sobolev Inequality in [12].

Remark 22 In the proof of Lemma 19 we required that hΓ ∈ D1 and h loghΓ ∈ D1 only
to differentiate etL̃h and show that

∑∞
N=0 aN

∫
(L̃h)NγNdvN = 0 and similarly for h logh.

We believe it is possible to implement the strategy outlined in Remark 21, and developed in
the proof below, directly to S(h) thanks to the representation of the evolution described in
Remark 8. This would eliminate the need for conditions on h but it would make the proof
below unnecessarily involved.

Proof of Lemma 20 A way to make the first step of the discussion in Remark 21 rigorous is
to coarse grain, that is to approximate each hN by a simple function obtained by averaging
it over the element of a partition ofRN made by rectangles obtained as the Cartesian product
of a finite number of measurable set of R.

More precisely, we call B = {Bk}Kk=1 a (measurable) partition of RN if Bk ⊂ R
N are

measurable and
⋃

k Bk = R
N while Bk ∩ Bk′ = ∅ if k �= k′. Given a measurable partition B

let Ik(vN , wN ) be the indicator function of Bk × Bk ⊂ R
2N and define the coarse graining

kernel:

CB (vN , wN ) =
K∑

k=1

1

ωk
Ik(vN , wN ) with ωk =

∫

Bk
γN (vN )dvN .

Clearly, for every wN we have
∫

RN
CB(vN , wN )γ (vN )dvN = 1

while CB(vn, wN ) = CB(wN , vN ). Given a function hN is L1(RN )we can define its coarse
grained version as

hN ,B(vN ) =
∫

RN
CB(vN , wN )hN (wN )γ (wN )dwN .

Observe that, if vN ∈ Bk then

hN ,B(vN ) = 1

ωk

∫

Bk
γ (wN )hN (wN )dwN .

This means that hN ,B(vN ) is a simple function that assumes only K possible values. Finally
we have

∫
RN hN ,B(vN )γ (vN )dvN = ∫

RN hN (vN )γ (vN )dvN .
Given measurable partitions B = {Bk}Kk=1 and B′ = {B ′

j }Jj=1of R
N and RM respectively,

we can define the product partition B × B′ = {Bk × B ′
j |k = 1, . . . , K j = 1, . . . , J } of

R
N+M . Observe that the coarse graining kernel of B × B′ satisfies

CB×B′(vN , v′
M , wN , w′

M ) = CB(vN , wN )CB′(v′
M , w′

M ) .

Finally, given a partition B = {Bk}Kk=1 of R, and k = (k1, . . . , kN ) ∈ {1, . . . , K }N we
consider the set Bk = ×i Bki ⊂ R

N . Clearly the Bk form a measurable partition of RN that
we will denote as BN . As before, we can define the coarse graining kernel for BN as

CBN (vN , wN ) =
∑

k∈{1,...,K }N

1

ωk
Ik(vN , wN )
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where ωk = ∏N
i=1 ωki and Ik(vN , wN ) is the characteristic function of Bk × Bk ∈ R

2N .
Moreover the coarse grained version of hN ∈ L1(RN , γN ) is

hN ,BN (vN ) =
∫

RN
γ (wN )CBN (vN , wN )hN (wN )dwN .

Again, if vN ∈ Bk we have

hN ,BN (vN ) = 1

ωk

∫

Bk
hN (vN )γN (vN )dvN := h̄N ,BN (k)

and hN ,BN (vN ) assumes only the K N possible values h̄N ,BN (k). Observe finally that, since

CBN (vN , wN ) =
N∏

i=1

CB(vi , wi ) ,

we can write

hN−1,BN−1(vN−1) =
∫

RN
γ (wN )CBN (vN , wN )hN−1(wN−1)dwN . (76)

Given a state h and a partition B of RN , we define the coarse grained version hB of h over
B by setting hB,N = hN ,BN . Since x log(x) is convex in x and (x − y)(log(x) − log(y)) is
jointly convex in x and y, for every partition B of R, we get

S(hB) ≤ S(h), Ψ (hB) ≤ Ψ (h), E(hB) = E(h) (77)

where in the inequality forΨ we used (76). On the other hand, we have the following Lemma.

Lemma 23 Given h, for every ε we can find a finite measurable partition B of R such that

S(h) − S(hB) ≤ ε

Proof See Appendix A.4. 
�
We thus claim that to prove Lemma 20 we just need to show that, for every finite partition

B of R and every state h we have

S(hB) ≤ E(hB) log E(hB) + μ

ρ
Ψ (hB) . (78)

To see this observe that Lemma 23, together with (77) and (78), implies that for every ε we
can find a partition B such that

S(h) ≤ S(hB) + ε ≤ E(hB) log E(hB) + μ

ρ
Ψ (hB) + ε

≤ E(h) log E(h) + μ

ρ
Ψ (h) + ε .

Thus we consider a given finite partition B = {Bk}Kk=1 and a given state h. Since hB,N

takes only finitely many values, it should be possible to transform the integrals defining
E(hB), S(hB) and Ψ (hB) into summations. To do this, given k ∈ {1, . . . , K }N , we define
the occupation numbers n(k) = (n1(k), . . . , nK (k)) ∈ N

K as

nq(k) =
∑

i

δq,ki .
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That is nq(k)is the number of i such that ki = q . In other words, if vN ∈ Bk then there are
nq(k) particles with velocity in Bq .

The fact that hN is invariant under permutation of its arguments implies that h̄N ,BN (k)
depends only on n(k) or, more precisely, if n(k) = n(k′) then h̄N ,BN (k) = h̄N ,BN (k′). This
allow us to define the function F : NK → R given by

F(n) = h̄N (k) if n = n(k), and N =
K∑

k=1

nk := |n| .

Using this definition and the fact that
∑K

k=1 ωk = 1, we can now write

E(hB) =
∑

N

aN
∑

k∈{1,...,K }N
h̄N ,BN (k)ωk

=
∑

N

e− μ
ρ

N !
(

μ

ρ

)N ∑

|n|=N

(
N

n1, . . . , nK

)
F(n)

K∏

k=1

ω
nk
k

=
∑

n∈NK

F(n)

K∏

k=1

παk (nk) := ẼαK
(F) (79)

where αK = (α1, . . . , αK ) with αk = μωk/ρ and

πα(n) = e−α αn

n! ,

that is παk is the Poisson distribution with expected value αk . Similarly we have

S(hB) =
∑

N

aN
∑

k∈{1,...,K }N
h̄N ,BN (k) log(h̄N ,BN (k))ωk

=
∑

n∈NK

F(n) log(F(n))

K∏

k=1

παk (nk) := S̃αK
(F) (80)

Finally setting nq = (n1, . . . , nq + 1, . . . , nK ) we get

Ψ (hB) =
∑

N

aN
∑

k∈{1,...,K }N

K∑

q=1

(h̄N+1,BN+1(k, q) − h̄N ,BN (k))·

× (log h̄N+1,BN+1(k, q) − log h̄N ,BN (k))ωkωq

= ρ

μ

K∑

q=1

αq

∑

n∈NK

(
F(nq) − F(n)

) (
log F(nq) − log F(n)

) K∏

k=1

παk (nk)

:= ρ

μ
Ψ̃αK

(F) . (81)

so that, to prove (78), we need to show that, for every F : NK → R+ and for every K and
αK ∈ R

K+ , if S̃K (F) < ∞ then

S̃αK
(F) ≤ Ψ̃αK

(F) + ẼαK
(F) log ẼαK

(F) . (82)
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We will prove (82) by induction over K . Assume that (82) is valid for every index less
than K for some K > 1 and write

S̃αK−1
(F(·, nK )) =

∑

n′∈NK−1

F(n′, nK ) log F(n′, nK )

K−1∏

k=1

παk (nk)

and similar expression for EαK−1
(F(·, nK )) and ΨαK−1

(F(·, nK )).
Using the inductive hypothesis we obtain

S̃αK
(F) =

∞∑

nK=0

S̃αK−1
(F(·, nK ))παK (nK ) ≤

∞∑

nK=0

Ψ̃αK−1
(F(·, nK ))παK (nK )

+
∞∑

nK=0

ẼαK−1
(F(·, nK )) log ẼαK−1

(F(·, nK ))παK (nK ) .

Calling F1(nK ) = ẼαK−1
(F(·, nK )) and using the inductive hypothesis again we get

∞∑

nK=0

ẼαK−1
(F(·, nK )) log ẼαK−1

(F(·, nK ))παK (nK ) = S̃αK (F1)

≤ Ψ̃αK (F1) + ẼαK (F1) log ẼαK (F1)

so that

S̃αK
(F) ≤

∞∑

nK=0

Ψ̃αK−1
(F(·, nK ))παK (nK ) + Ψ̃αK (F1) + ẼαK (F1) log ẼαK (F1) . (83)

Observing that ẼαK (F1) = ẼαK
(F) and that, by convexity,

Ψ̃αK (F1) = αK

∞∑

n=0

(F1(n + 1) − F1(n))(log F1(n + 1) − log F1(n))παK (n)

≤ αK

∑

n∈NK

(
F(nK ) − F(n)

) (
log F(nK ) − log F(n)

) K∏

k=1

παk (nk)

we get (82) for K . Thus, by induction, to prove (82) for every K we just need to prove it for
K = 1. This is the content of the following Lemma.

Lemma 24 Let πα be the Poisson distribution on N with expected value α > 0 and f : N →
R

+ be such that
∞∑

n=0

f (n) log f (n)πα(n) < ∞ ,

then we have
∞∑

n=0

f (n) log f (n)πα(n) ≤
( ∞∑

n=0

f (n)πα(n)

)

log

( ∞∑

n=0

f (n)πα(n)

)

+ α

∞∑

n=0

( f (n + 1) − f (n)) (log f (n + 1) − log f (n)) πα(n) .

(84)
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Proof Observe first that since απα(n) = (n + 1)πα(n + 1) we get

α

∞∑

n=0

( f (n + 1) − f (n)) (log f (n + 1) − log f (n)) πα(n)

=
∞∑

n=1

n ( f (n) − f (n − 1)) (log f (n) − log f (n − 1)) πα(n) .

Let now πα,N (n) be the binomial distribution with parameters N and α/N , that is

πα,N (n) =
(
N

n

)( α

N

)n (
1 − α

N

)N−n
.

We will prove by induction that for every N and every α ≤ N we have

N∑

n=0

f (n) log f (n)πα,N (n) ≤
(

N∑

n=0

f (n)πα,N (n)

)

log

(
N∑

n=0

f (n)πα,N (n)

)

+
N∑

n=1

n ( f (n) − f (n − 1)) (log f (n) − log f (n − 1)) πα,N (n)

(85)

so that, taking the limit for N → ∞, we will obtain (84). The base case N = 1 is covered
by the following Lemma. 
�
Lemma 25 Let μx ≥ 0, x ∈ {0, 1}, be such that μ0 + μ1 = 1 then for every function
f : {0, 1} → R

+ we have

∑

x=0,1

f (x) log f (x)μx ≤
⎛

⎝
∑

x=0,1

f (x)μx

⎞

⎠ log

⎛

⎝
∑

x=0,1

f (x)μx

⎞

⎠

′

+ μ0μ1 ( f (1) − f (0)) (log f (1) − log f (0)) . (86)

Proof Calling h(0) = f (0)/(μ0 f (0) + μ1 f (1)) and h(1) = f (1)/(μ0 f (0) + μ1 f (1)),
(86) becomes

∑

x=0,1

h(x) log h(x)μx ≤ μ0μ1 (h(1) − h(0)) (log h(1) − log h(0)) .

Since μ0h(0) + μ1h(1) = 1 we can write h(0) = 1 + δμ1 and h(1) = 1 − δμ0 and we get
∑

x=0,1

h(x) log h(x)μx

= μ0μ1δ(log(1 + δμ1) − log(1 − δμ0)) + μ0 log(1 + δμ1) + μ1 log(1 − δμ0)

≤ μ0μ1δ(log(1 + δμ1) − log(1 − δμ0))

= μ0μ1 (h(1) − h(0)) (log h(1) − log h(0))

where we have used concavity of the logarithm. 
�
Assume now that (85) holds for every index less than N . Given α ≤ N call β = (N −

1)α/N so that β ≤ N − 1. Define also μ0 = 1 − α/N , μ1 = α/N , and observe that, for
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every J : N → R,

N∑

n=0

J (n)πα,N (n) =
∑

x=0,1

N−1∑

n=0

J (n + x)πβ,N−1(n)μx . (87)

Calling

f̄ (x) =
N−1∑

n=0

f (n + x)πβ,N−1(n)

and using (87) and the inductive hypothesis for index N − 1, we get

N∑

n=0

f (n) log f (n)πα,N (n) =
∑

x=0,1

N−1∑

n=0

f (n + x) log f (n + x)πβ,N−1(n)μx

≤
∑

x=0,1

f̄ (x) log f̄ (x)μx

+
∑

x=0,1

N−1∑

n=1

n ( f (n + x) − f (n − 1 + x))

· (log f (n + x) − log f (n − 1 + x)) πβ,N−1(n)μx

while using Lemma 25 for the first term in the second line delivers

N∑

n=0

f (n) log f (n)πα,N (n) ≤
(

N∑

n=0

f (n)πα,N (n)

)

log

(
N∑

n=0

f (n)πα,N (n)

)

+ μ0μ1( f̄ (1) − f̄ (0))(log f̄ (1) − log f̄ (0))

+
∑

x=0,1

N−1∑

n=1

n ( f (n + x) − f (n − 1 + x))

· (log f (n + x) − log f (n − 1 + x)) πβ,N−1(n)μx (88)

Finally using the joint convexity in (x, y) of the function (x − y)(log x − log y) and the fact
that μ0 < 1 we can write

μ0μ1( f̄ (1) − f̄ (0))(log f̄ (1) − log f̄ (0))

≤ μ1

N−1∑

n=0

( f (n + 1) − f (n))(log f (n + 1) − log f (n))πβ,N−1(n)

that inserted in (88) gives

N∑

n=0

f (n) log f (n)πα,N (n) ≤
(

N∑

n=0

f (n)πα,N (n)

)

log

(
N∑

n=0

f (n)πα,N (n)

)

+
∑

x=0,1

N−1∑

n=1

(n + x) ( f (n + x) − f (n − 1 + x))

· (log f (n + x) − log f (n − 1 + x)) πβ,N−1(n)μx .
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Changing summation variables from (x, n) to (x, n + x) and using (87) we obtain (85) for
index N . Thus (85) is valid for every N ≥ 1 and every α ≤ N .

To complete the proof of Lemma 24we need to show thatwe can take the limit for N → ∞
in (85). To this end observe that given α, for N large enoughwe have 0 <

(
1 − α

N

)N ≤ 2e−α .
Thus for large N and α < n ≤ N we get

πα,N (n) ≤ 2e−α (α)n

n!
(
1 − α

N

)−n n∏

i=1

(
1 − i

N

)

≤ 2e−α (α)n

n!
(
1 − α

N

)−�α� �α�∏

i=1

(
1 − i

N

)
≤ 4πα(n) . (89)

Using Dominated Convergence, (89) implies that, if f (n) is bounded below and
∑∞

n=0 f (n)

πα(n) ≤ ∞ then

lim
N→∞

N∑

n=0

f (n)πα,N (n) =
∞∑

n=0

f (n)πα(n) .

We can now let N → ∞ in (85) to obtain (84). This concludes the proof of Lemma 24. 
�
To sum up, the validity of (84) together with the inductive argument in (83) shows that

(82) is valid for every K and αk , k = 1, . . . , K . This in turn, together with (79), (80) and (81),
establishes the validity of (78) for every state h and every partition B of R. This, together
with Lemma 24 completes the proof of Lemma 20. 
�

Observe now that if f is a probability distribution E(h) = 1 so that Lemma 20, together
with Lemma 19, gives

d+
dt

S(h(t)) ≤ −ρS(h(t)) (90)

To complete the proof of Theorem 4 we have to show that (90) implies (15). To this end, take
ρ′ < ρ, assume that there exists t such that S(h(t)) > e−ρ′t S(h(0)) and let

T = inf{t ≥ 0 | S(h(t)) > e−ρ′t S(h(0))} .

By continuity we get S(h(T )) = e−ρ′T S(h(0)). From (90), for every ε we can find δ such
that

S(h(T + h)) ≤ (1 − ρh)e−Tρ′
S(h(0)) + hε

for every h ≤ δ. Choosing ε = (ρ − ρ′)e−Tρ′
S(h(0)) we get

S(h(T + h)) ≤ e−(T+h)ρ′
S(h(0))

which implies that S(h(t)) ≤ e−tρ′
S(h(0)) for every t ≥ 0 and every ρ′ < ρ. 
�

3.5 Derivation of (17)

To prove (17), we observe that η(t) and g(v, t) in (18) satisfy the equations

η̇(t) = μ − ρη(t)

ġ(v, t) = μ

η(t)
(γ (v) − g(v, t)) .
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Setting f(t) = ( f0(t), f1(t), f2(t), . . .) with

fN (vN , t) = e−η(t) η(t)N

N !
N∏

i=1

g(vi , t)

we get

d

dt
fN (vN , t) = (μ − ρη(t))e−η(t) η(t)N−1

(N − 1)!
(
1 − η(t)

N

) N∏

i=1

g(vi , t)

+ μe−η(t) η(t)N−1

N !
∑

i

⎛

⎝(γ (vi ) − g(vi , t))
∏

j �=i

g(v j , t)

⎞

⎠

= ρe−η(t) η(t)N+1

N !
N∏

i=1

g(vi , t) − ρe−η(t) η(t)N

(N − 1)!
N∏

i=1

g(vi , t)

+ μe−η(t) η(t)N−1

N !
∑

i

γ (vi )
∏

j �=i

g(v j , t) − μe−η(t) η(t)N

N !
N∏

i=1

g(vi , t)

= ρ((Of(t))N (v) − N fN (vN , t)) + μ((If(t))N (v) − fN (vN , t)) .

Thus f(t) solves (1) with λ̃ = 0. Clearly f(t) ∈ D1 for every t ≥ 0 so that, by Remark 7,
f(t) = etT f(0).

3.6 Proof of Theorem 5

Given a continuous and bounded test function φk : Rk → R, symmetric with respect to the
permutation of its variables, we define

(fn, φk)k,n =
(

ρ

μn

)k ∑

N≥k

N !
(N − k)!

∫

RN
fn,N (vN )φk(vk)dvN .

What we need to show is that, if fn forms a chaotic sequence and φ : R → R is a test function
then

lim
n→∞(eLn t fn, φ⊗k)k,n =

(
lim
n→∞(eLn t fn, φ)1,n

)k

which implies propagation of chaos.
The argument to prove propagation of chaos introduced in [16] is based on the power

series expansion of eλKN t , which converges since KN is a bounded operator. After this, one
can exploit a cancellation between QN and

(N
2

)
Id, see (5), when they act on a function φk

depending only on k < N variables, see Sect. 3 of [16]. In the present case the analogue of
such an argument formally works but it cannot be applied directly since, beingK unbounded,
the power series expansion of eλ̃nKt does not converge. To avoid this problem, one may try
to use the convergent expansion (27) introduced in Sect. 3.1. But the different treatment of
QN and

(N
2

)
Id in (27) would make it very hard to see the needed cancellation.

Thus wewill introduce a partial expansion of eλ̃nKt and combine it with (33) and (40). The
idea is to expand this exponential in the least possible way to exploit the central cancellations
of McKean’s argument. We first decompose KN as

KN = Kk + K̃N−k + (N − k)Gk
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with

K̃N−k =
∑

k+1≤i< j≤N

(Ri, j − Id)

Gk = 1

N − k

k∑

i=1

N∑

j=k+1

(Ri, j − Id)

and obtain

eλ̃n KN tφk = eλ̃n Kk tφk + (N − k)λ̃n

∫ t

0
eλ̃n KN (t−s)Gke

λ̃n Kksφkds (91)

where we used that KN is a bounded operator on C0(RN ) and that K̃N−kφk = 0. Since we
are interested in integrating (91) against a symmetric function fN we can write

Gk[φk](vk+1) =
k∑

i=1

∫
dθ

2π
[φ(v1, . . . , vi−1, vi cos θ + vk+1 sin θ, vi+1, . . . , vk) − φ(vk)]

To iterate we need to apply (91) to the factor eλ̃n KN (t−s) inside the integral in (91) itself.
Since Gkeλ̃n Kksφk is a function of k + 1 variables we now have to write

KN = Kk+1 + K̃N−k−1 + (N − k − 1)Gk+1 .

Iterating this procedure we get

eλ̃n KN tφk = eλ̃n Kk tφk

+
N−k∑

p=1

λ̃
p
n (N − k)!

(N − k − p)!
∫

0<t1<···<tp<t
eλ̃n Kk+p(t−tp)Gk+p−1e

λ̃n Kk+p−1(tp−tp−1)

· · · e(t2−t1)λ̃n Kk+1Gke
λ̃n Kk t1φk dtp · · · dt1

so that

(eλ̃nKt fn, φk)k,n = (fn, eλ̃n Kk tφk)k,n

+
∞∑

p=1

λp
∫

0<t1<···<tp<t

(
fn, eλ̃n Kk+p(t−tp)Gk+p−1e

λ̃n Kk+p−1(tp−tp−1)

· · · e(t2−t1)λ̃n Kk+1Gke
λ̃n Kk tφk

)
k+p,n dtp · · · dt1 (92)

where the factor λp in the second line of (92), comes from (25) and (19).
Observe now that the Ri, j are averaging operators so that ‖Ri, j‖∞ ≤ 1 which gives

∥∥et λ̃n KN
∥∥∞ = e−t λ̃(N2)

∥∥et λ̃
∑

1≤i< j≤N Ri, j
∥∥∞ ≤ 1 .

For the same reason we have

‖Gk‖∞ ≤ 1

N − k

k∑

i=1

N∑

j=k+1

(‖Ri, j‖∞ + 1) ≤ 2k .

Using (21) we get

∣∣∣(eλ̃nKt fn, φk)k,n

∣∣∣ ≤
(

ρ

μn

)k

‖fn‖(k)
1 ‖φk‖∞

123



Grand Canonical Evolution for the Kac Model Page 37 of 50 7

+
∞∑

p=1

λpt p

p!
k+p−1∏

i=k

‖Gi‖∞
(

ρ

μn

)k+p

‖fn‖(k+p)
1 ‖φk‖∞

≤ ‖φk‖∞Kk
∞∑

p=0

2pλpt pK p
(
k + p − 1

p

)
.

Observe that the series in the last line converges for λKt < 1/2. On the other hand, since
limn→∞ λ̃n = 0, for every t we have

lim
n→∞(fn, eλ̃n Kk tφk)k,n = lim

n→∞(fn, φk)k,n

and similarly, calling G∗p
k = ∏p

i=0 Gk+i ,

lim
n→∞

∫

0<t1<···<tp<t

(
fn, eλ̃n Kk+p(t−tp)Gk+p−1e

λ̃n Kk+p−1(tp−tp−1)

· · · e(t2−t1)λ̃n Kk+1Gke
λ̃n Kk tφk

)
k+p,n dtp · · · dt1 = lim

n→∞
(
fn,G

∗p
k φk

)
k+p,n

so that we finally get

lim
n→∞(eλ̃nKt fn, φk)k,n = lim

n→∞

∞∑

p=0

λpt p

p!
(
fn,G

∗p
k φk

)
k+p,n . (93)

Observe now that Gk acts as a derivation in the sense of [16], that is, for every φk1 and ψk2
with k1 + k2 = k, we have

Gk(φk1 ⊗ ψk2) = (Gk1φk1) ⊗ ψk2 + φk1 ⊗ (Gk2ψk2) .

This implies that

1

p!G
∗p
k (φk1 ⊗ ψk2) =

∑

p1+p2=p

1

p1!
1

p2! (G
∗p1
k1

φk1) ⊗ (G∗p1
k2

ψk2) . (94)

Observing that if fn forms a chaotic sequence then

lim
n→∞(fn, φk1 ⊗ ψk2)k,n = lim

n→∞(fn, φk1)k1,n lim
n→∞(fn, ψk2)k2,n (95)

we get

lim
n→∞

∞∑

p=0

λpt p

p! (fn,G
∗p
k φk1 ⊗ ψk2)k+p,n (96)

= lim
n→∞

∞∑

p1=0

λp1 t p1

p1!
(
fn,G

∗p1
k1

φk1

)

k1+p1,n
lim
n→∞

∞∑

p2=0

λp2 t p2

p2!
(
fn,G

∗p2
k2

φk2

)

k2+p2,n

which implies that eλ̃nKt propagates chaos, at least for t ≤ t0 = 1
2λK . Finally we need to

verify that (21) still holds. Since fn are positive ‖fn‖(r)
1 = Nr (f), see (43). Thus Corollary 9

implies that for every t ≥ 0 we have ‖fn(t)‖(r) ≤ Kr
1

(
μn
ρ

)r
with K1 = max{K , 1}. Thus

fn(t0) = eλ̃nKt0 fn forms a chaotic sequence that satisfies (21) with K1 in place of K . Using
fn(t0) as initial condition we get that propagation of chaos holds up to time t1 = 1

2λK + 1
2λK1

.

Iterating this argument we see that eλ̃nKt propagates chaos for every t ≥ 0.
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To add the out operator O, we observe that from (93) we get

lim
n→∞(e(λ̃nK−ρN )t fn, φk)k,n

= lim
n→∞

∞∑

p=0

λpt p

p!
(

ρ

μ

)k+p ∑

N≥k+p

N !
(N − k − p)!e

−ρNt

×
∫

fn,N (vN )(G∗p
k φk)(vk+p)dvN . (97)

Inserting (97) into (33), after some long algebra that we report in Appendix A.5, we obtain

lim
n→∞

(
e(λ̃nK+ρ(O−N ))t fn, φk

)

k,n
= lim

n→∞

∞∑

p=0

t pλp

p!
(
fn, e−ρ(k+p)t G∗p

k φk

)

k+p,n
. (98)

It is not hard to see that (98) implies that e(λ̃nK+ρ(O−N ))t propagates chaos.
Finally we consider the in operator I. Observe that

μn(Ifn, φk)k,n = μn

(
ρ

μn

)k ∑

N≥k

(N − 1)!
(N − k)!

∫ N∑

i=1

fn,N−1(v
i
N−1)γ (vi )φk(vk)dvN

= μn

(
ρ

μn

)k ∑

N≥k

(N − 1)!
(N − k)!

∫ (
(N − k) fn,N−1(vN−1)γ (vN )φk(vk)dvN

+ k fn,N−1(vN−1)φk(vk−1, vN )γ (vN )dvN

)

= μn

(
ρ

μn

)k ∑

N>k

(N − 1)!
(N − 1 − k)!

∫
fn,N−1(vN−1)φk(vk)γ (vN )dvN−1

+ kρ

(
ρ

μn

)k−1 ∑

N≥k−1

N !
(N − (k − 1))!

×
∫

fn,N (vN )φk(vk−1, w)γ (vN )dvNdw

so that
μn(Ifn − fn, φk)k,n = (fn, Ikφk)k−1,n (99)

where

Ik[φk](vk−1) := ρk
∫

R

φk(vk−1, w)e−πw2
dw .

which clearly act as a derivative in the sense of [16]. We can now use an expansion similar
to (34)

etLn fn = e(λ̃nK+ρ(O−N ))t fn

+
∞∑

q=1

μ
q
n

∫

0<t1<...<tq<t

e(λ̃nK+ρ(O−N ))(t−tq )(I − Id)e(λ̃nK+ρ(O−N ))(tq−tq−1)

· · · (I − Id)e(λ̃nK+ρ(O−N ))t1 fn dt1 · · · dtn (100)
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that combined (99) with (98) gives

lim
n→∞(eLn t fn, φk)k,n = lim

n→∞
∑

q≥0

∑

p0,p1,...,pq≥0

ρqλ|p|e−ρkt

·
∫

0≤tq≤···≤t1≤t

q∏

i=0

e−ρ(ti−ti+1)(|p|i−i) (ti − ti+1)
pi

pi ! dt1 · · · dtq ·
(
fn,G

∗pq
k+|p|q−q Ik+|p|q−q+1 · · ·G∗p1

k+p0−1 Ik+p0G
∗p0
k φk

)

k+|p|−q,n

(101)

where |p|i = ∑i−1
j=0 p j and t0 = t , tq+1 = 0 and the order of the ti in the integral is inverted

due to the inversion of the order of the operators when taking the adjoint. From (101) it
follows, after more long algebra reported in Appendix A.5, that, if k1 + k2 = k, then

lim
n→∞(eLn t fn, φk1 ⊗ ψk2)k,n = lim

n→∞(eLn t fn, φk1)k1,n lim
n→∞(eLn t fn, ψk2)k2,n (102)

that is, eLn t propagates chaos. The validity of the Boltzmann-Kac type equation (26) follows
exactly as in [16]. 
�

4 Conclusions

The central aim of this work is the extension of the analysis in [4], in which a thermostat
idealizes the interaction with a large reservoir of particles kept at constant temperature and
chemical potential. While in [4] the reservoir and the system could not exchange particles,
here the main interaction is the continuous exchange of particles between the two.

However, it is in this same work which we hoped to extend that we also find points of
possible extension to our current work. In the case of the standard Kac model, approach to
equilibrium in the sense of the GTW metric d2 was shown in [18] while for a Kac system
interacting with one or more Maxwellian thermostats it was shown in [8]. In the present
situation though, it is not clear how to define an analogue of the GTW metric since the
components fN of a state f are not, in general, probability distributions on RN .

Furthermore, in [3] the authors show that, in a strong and uniform sense, the evolution
of the Kac system with a Maxwellian thermostat can be thought of as an idealization of the
interaction with a large heat reservoir, itself described as a Kac system.We think it is possible
to replicate such an analysis in the present context and hope to come back to this issue in a
forthcoming paper.

We based our proof of propagation of chaos on the work in [16]; therefore, as in [16], it is
not quantitative nor uniform in time. Recently, a quantitative and uniform in time result was
obtained for the Kac system with a Maxwellian thermostat [6]. It is unclear to us whether
the methods in their work extend to the present model.

Finally, the assumption that the rates ρ and μ are independent of the number of particles
is clearly unrealistic, allowing the possibility of an unbounded number of particles in the
system. However, in the steady state (and in a chaotic state) the probability of having a
number of particles in the system much larger then the average is extremely small, and so
we do not consider this a serious problem. In any case, it would be interesting to investigate
what happens if one assumes a maximum number of particles allowed inside the system.
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A Proofs of Technical Lemmas

A.1 Proof of Lemma 16

As already observed, we will search for the infimum of (h,−Gh) on Vm looking at states h
close to R+

me
0. This is done using the representations (103) and (105) below. Since μ/ρ is

large, (71) and (72) suggest that the dominant term in (h,Gh) for a state h close to R+
me

0

is the “diagonal term”, that is the first term on the right hand side of (71) or (72). To prove
Lemma 16 we thus need good bounds on the “off diagonal” terms. The proof in this section
is thus loosely based on the proof of the Gershgorin circle theorem, see [10].

If m = 2n + 1, we can write any h ∈ Vm as

h = aR+
2n+1e

0 + bR+
0 R

+
2n+1e

0 + j = aR+
2n+1e

0 + k (103)

with j ⊥ R+
2n+1e

0 and j ⊥ R+
0 R

+
2n+1e

0.
From (72) we get (R+

2n+1e
0,KR+

2n+1e
0) = −μ/ρ so that

(h,−L̃h) = (h, (−G − λ
ρ

μ
K)h)

= a2(λ + ρ) + (k, (−G − λ
ρ

μ
K)k) + 2a(R+

2n+1e
0, (−G − λ

ρ

μ
K)k)

By construction k is in the span of the eα with λ(α) ≥ 2 so that (R+
2n+1e

0,Gk) = 0 and
(k,−Gk) ≥ 2ρ‖k‖2 = 2ρ(b2 + ‖j‖22) while from (72) we get

(R+
2n+1e

0,Kk) = b(KR+
2n+1e

0,R+
2n+1e

0) + (KR+
2n+1e

0, j) = −
√

μ

ρ
b (104)

This gives

(h,−L̃h) ≥ a2(λ + ρ) + 2ρ(b2 + ‖j‖22) − 2λ|ab|
√

ρ

μ

≥ a2
(

ρ + λ − λ

√
ρ

μ

)
+ b2

(
2ρ − λ

√
ρ

μ

)
+ 2ρ‖j‖22 .

Since ‖h‖2 = a2 + b2 + ‖j‖2 we get (73).
Similarly, every h ∈ V2n with n ≥ 2 can be written as

h = aR+
2ne

0 +
n/2∑

k=0

bkR+
2kR

+
2(n−k)e

0 + j = aR+
2ne

0 + k (105)

where j ⊥ R+
2ne

0 and j ⊥ R+
2kR

+
2(n−k)e

0. Observe that

∥∥∥∥

n/2∑

k=0

bkR+
2kR

+
2(nk) be

0
∥∥∥∥

2

2
=

n/2∑

k=0

εn,kb
2
k
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where, due to (60), εn,k = 2 if k = n − k and 1 otherwise. Analogously to (104), using (71),
we get

(R+
2ne

0,KR+
2ne

0) = μ

ρ
(2τn − 1)

(R+
2ne

0,Kk) = 2
√

μ

ρ

n/2∑

k=1

bkσn,k + b0

√
μ

ρ
(1 − 2τn) .

Proceeding as before we obtain

(h,−L̃h) = (h, (−G − λ
ρ

μ
K)h)

= a2((1 − 2τn)λ + ρ) + (k, (−G − λ
ρ

μ
K)k) + 2a(R+

2ne
0, (−G − λ

ρ

μ
K)k)

≥ a2((1 − 2τn)λ + ρ) + 2ρ

⎛

⎝
n/2∑

k=0

εn,kb
2
k + ‖j‖22

⎞

⎠

− 4λ
√

ρ

μ

n/2∑

k=1

|abk |σn,k − 2λ|ab0|
√

ρ

μ
(1 − 2τn) .

which gives

(h,−L̃h) ≥ a2((1 − 2τn)λ + ρ) + 2ρ

⎛

⎝
n/2∑

k=0

εn,kb
2
k + ‖j‖2

⎞

⎠

− λ

√
ρ

μ

⎡

⎣2
n/2∑

k=1

a2σ 2
n,k + a2(1 − 2τn)

2 + 2
n/2∑

k=0

b2k

⎤

⎦

≥
(
2ρ − 2λ

√
ρ

μ

)⎡

⎣
n/2∑

k=0

εn,kb
2
k

⎤

⎦+ a2
(

(1 − 2τn)λ + ρ − λ

√
ρ

μ
A2n

)
+ 2ρ‖j‖22

where

A2n = (1 − 2τn)
2 + 2

n/2∑

k=1

σ 2
n,k .

We thus need an upper bound on An . To this end, observe that

log τn = log
n∏

i=1

(
1 − 1

2i

)
≤ −

n∑

i=1

1

2i
≤ −1

2
log n ⇒ τn ≤ 1√

n

while, from (70), we have

σ 2
n,k ≤ τn

1

n

1
√

k
n

√
1 − k

n

so that
n/2∑

k=1

σ 2
n,k ≤ τn

∫ 1
2

0

1√
x(1 − x)

dx = π

2
τn .
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Finally we get A2n ≤ 2 which implies (74). 
�

A.2 Proof of Lemma 17

Proceeding as in (28) we can write

eλ̃KN t fN = e−λ̃(N2)t fN + te−λ̃(N2)t
∞∑

k=1

λ̃knt
k−1

k! Qk
N fN

1

t

(
eλ̃KN t fN − fN

)
= e−λ̃(N2)t λ̃QN fN + 1

t

(
e−λ̃(N2)t − 1

)
fN

+ te−λ̃(N2)t
∞∑

k=2

λ̃knt
k−2

k! Qk
N fN

Since RN (vN , t) = ∑∞
k=1

λ̃kn t
k−1

k! (Qk
N fN )(vN ) is a sum of positive increasing terms and

‖RN (t)‖1 < ∞, we see that te−λ̃(N2)t RN (vN , t) converges to 0 as t → 0 for almost every

vN . A similar argument implies that
(
eλ̃KN t fN − fN

)
/t converges almost everywhere to

λ̃KN fN .
Using the Duhamel formula we can write

(
e(λ̃K+ρ(O−N ))t f

)

N
= e

(
λ̃KN−ρN

)
t
fN

+ ρe

(
λ̃KN−ρN

)
t
∫ t

0
e
−
(
λ̃KN−ρN

)
s
(
Oe

(
λ̃K+ρ(O−N )

)
s
f
)

N
ds

:= e

(
λ̃KN−ρN

)
t
( fN + RN (t)) . (106)

Since RN (t, vN ) is increasing in t and ‖RN (t)‖1,N → 0 as t → 0+ we see that

lim
t→0+

(
e(λ̃K+ρ(O−N ))t f

)

N
(vN ) = fN (vN )

for almost every vN . Similarly using the Duhamel formula once more we get

RN (t) = ρ

∫ t

0
e
−
(
λ̃KN−ρN

)
s
(
Oe

(
λ̃K−ρN

)
s
f
)

N
ds + R1,N (t)

where

R1,N (t) = ρ2
∫ t

0

∫ s

0
e
−
(
λ̃KN−ρN

)
s
(
Oe

(
λ̃K−ρN

)
(s−s1)Oe

(
λ̃K+ρ(O−N )

)
s1 f
)

N
ds1ds

Reasoning as in (106) we get R1,N (t, vN )/t → 0 as t → 0+ for almost every vN while
proceeding as in (39) we get

lim
t→0+

1

t

∫ t

0
e
−
(
λ̃KN−ρN

)
s
(
Oe

(
λ̃K−ρN

)
s
f
)

N
ds = (Of)N .

Finally a similar argument using (40) concludes the proof. 
�
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A.3 Proof of Lemma 18

Since Ri, j is an average, we have Ri, j hN log(Ri, j hN ) ≤ Ri, j (hn log hN ) , from which,

calling QN = (N
2

)−1
QN , see (5), it follows that QNhN log(QNhN ) ≤ QN (hn log hN ).

Finally writing

eλ̃KN hN = e−λ̃(N2)t
∞∑

n=0

(
N

2

)n
λ̃ntn

n! Q
n
NhN

we get eλ̃KN hN log(eλ̃KN hN ) ≤ eλ̃KN (hn log hN ).
Proceeding as in Sect. 3.1 we can write

eL̃th = e(λ̃K−ρN−μId)th +
∫ t

0
e(λ̃K−ρN−μId)(t−s)(ρP+ + μP−)eL̃sh ds . (107)

so that, writing h(t) = (h0(t), h1(v1, t), . . .) and using the notation introduced in the proof
of Lemma 12, we get

hN ,t = e−(ρN+μId)t
(
eλ̃KN t hN (0)

)

+
∫ t

0
e−(ρN+μId)(t−s)ρ

N∑

i=1

eλ̃KN (t−s)P+
N ,i hN−1(s)ds

+
∫ t

0
e−(ρN+μId)(t−s)μeλ̃KN (t−s)P−

N hN+1(s)ds

Observing that

e−(ρN+μId)t +
∫ t

0
e−(ρN+μId)(t−s)(ρN + μ)ds = 1

while

P+
N ,i hN−1 log(P

+
N ,i hN−1) = P+

N ,i (hN−1 log hN−1)

P−
N hN+1 log(P

−
N hN+1) ≤ P−

N (hN+1 log hN+1)

we get

hN (t) log hN (t) ≤ e(λ̃KN−ρN−μId)t (hN (0) log hN (0))

+
∫ t

0
e(λ̃KN−ρN−μId)(t−s)ρ

N∑

i=1

P+
N ,i (hN−1(s) log hN−1(s))ds

+
∫ t

0
e(λ̃KN−ρN−μId)(t−s)μP−

N (hN+1(s) log hN+1(s))ds

=
(
e(λ̃K−ρN−μId)th log h

)

N

+
(∫ t

0
e(λ̃K−ρN−μId)(t−s)(ρP+ + μP−)eL̃s(h logh) ds

)

N
.

This, together with (107), completes the proof. 
�
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A.4 Proof of Lemma 23

Given hN ∈ L1(RN , γN ) and a measurable set A ∈ R
N

s(hN ) :=
∫

RN
γN (vN )hN (vN ) log hN (vN )dvN .

and

m(A) :=
∫

A
γN (vN )dvN

e(hN , A) := 1

m(A)

∫

A
hN (vN )γN (vN )dvN

s(hN , A) := 1

m(A)

∫

A
hN (vN ) log(hN (vN ))γN (vN )dvN

d(hN , A) := s(hN , A) − e(hN , A) log(e(hN , A)) .

Observe that m defines a probability measure on RN while d(hN , A) ≥ 0 for every A.

Lemma 26 Let hN > 0 be such that s(hN ) < ∞. Then for every ε > 0 there exists δ > 0
such that, if A is a measurable set with m(A) ≤ δ then m(A)d(hN , A) ≤ ε.

Proof Observe that

m(A)d(hN , A) =
∫

A
hN (vN ) log(hN (vN ))γN (vN )dvN

−
∫

A
hN (vN )γN (vN )dvN log

(∫

A
hN (vN )γN (vN )dvN

)

+ log(m(A))

∫

A
hN (vN )γN (vN )dvN (108)

The last term on the right hand side of (108) is negative while continuity of the Lebesgue
integral implies that, given ε > 0 we can find δ > 0 such that, if A is a measurable set with
m(A) ≤ δ then the first and second terms in the right hand side of (108) are less then ε/2. 
�

Given two partitions B0 and B1 of R we say that B1 refines B0 if every element of B0

can be written as a union of elements of B1. By convexity, if B1 refines B0 then s(hN ,BN
0
) ≤

s(hN ,BN
1
). It is also easy to see that given two partitions B0 and B1 there always exists a

partition B2 that refines both B0 and B1.
The following Lemma is the main result of this Appendix.

Lemma 27 Let hN > 0 be such that s(hN ) < ∞. Then for every ε there exists a finite
partition B of R such that

s(hN ) − s(hN ,BN ) ≤ ε .

Proof Given a partition B = {Bk}Kk=1 of R, we have

s(hN ) =
∑

k∈{1,...,K }N
m(Bk)s(hN , Bk)

s(hN ,BN ) =
∑

k∈{1,...,K }N
m(Bk)e(hN , Bk) log(e(hN , Bk))
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so that we need to find B such that
∑

k∈{1,...,K }N
m(Bk)d(hN , Bk) ≤ ε .

To simplify notation, in what follows, wewill write d(A) for d(hN , A). Thanks to Lemma 26,
given ε we can find δ such that for every A with m(A) < δ we have m(A)d(A) < ε/2.
Moreover there exists L such that calling QL = (−L, L)N we have m(R) ≤ δ/2 for every
R ⊂ R

N\QL .1

Let now ql(vN ) = {wN | |wi − vi | < l}, that is ql(vN ) is the cube of side 2l cen-
tered at vN . By Lebesgue Differentiation Theorem, see e.g. Chap. 3 of [9], we get that
liml→0 d(ql(vN )) = 0 for m almost every vN . Thus, given ε0 to be fixed later, there exists l̄
such that m({vN | d(ql̄(vN )) > ε0}) ≤ δ/2. Let Q0 = {vN | d(ql̄(vN )) ≤ ε0} ∩ QL .

Let K be the smallest integer such that l0 = L/K < l̄ and consider the partition A of
[−L, L) formed by the sets Ak = [kl0, (k + 1)l0) with −K ≤ k < K . For every Ak ∈ AN

let Ck = ∅ if Ak ∩ Q0 = ∅. Otherwise select a point vN ∈ Ak ∩ Q0 and set Ck = ql̄(vN ).
Observe that, for every k, Ak ∩ Q0 ⊂ Ck so that Q0 ⊂ ⋃

k Ck := Q1. This means that the

Ck form a covering of Q1 but not necessarily a partition. Let D = {Dj }Jj=1 be the minimal

partition of Q1 such that, for every j , Dj ⊂ Ck for some k.2 We claim that

J∑

j=1

m(Dj )d(Dj ) ≤ 5N ε0m(Q1) . (109)

To see this, let n j be the number of k such that Dj ⊂ Ck . By construction we have n j ≥ 1.
On the other hand, for vN ∈ Ak andwN ∈ Ak′ , since l0 ≥ l̄/2, we have ql̄(vN )∩ql̄(wN ) = ∅
if
∑N

i=1 |ki − k′
i | > 2. This implies that n j ≤ 5N . Calling Jk = { j | Dj ⊂ Ck}, by convexity,

we have
∑

j∈Jk

m(Dj )d(Dj ) ≤ m(Ck)d(Ck) ≤ ε0m(Ck)

because, by construction, the center of Ck is in Q0. It follows that

J∑

j=1

m(Dj )d(Dj ) ≤
J∑

j=1

n jm(Dj )d(Dj ) =
∑

k

∑

j∈Jk

m(Dj )d(Dj ) ≤ ε0
∑

k

m(Ck)

= ε0

J∑

j=1

n jm(Dj ) ≤ ε05
Nm(Q1)

where we used the bound on n j and the fact that D is a partition.

We can now extend D to a partition D̃ = {Dj } J̃j=1 of R
N by adding finitely many rectan-

gles. By construction, m(
⋃ J̃

j=J+1 Dj ) = m(RN\Q1) ≤ δ so that, choosing ε0 = 5−N ε/2,

we get s(hN ) − s(hN ,D) ≤ ε05Nm(Q1) +m(RN\Q1)d(RN\Q1) ≤ ε. Finally, since every
Dj ∈ D̃ is a rectangle, we can find a finite partition B of R such that BN refines D̃. This
concludes the proof of Lemma 27. 
�
1 Observe that for our purpose it is enough to work with a partition mod 0, that is a family of set Bk such that
m(R\⋃k Bk ) = 0 and m(Bk ∩ Bk′ ) = 0 for k �= k′. For this reason, the boundaries of the rectangles defined
in this proof are irrelevant.
2 The partition D can be constructed by taking intersections of the Ck and their complements.
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We are now ready to prove Lemma 23. Consider h such that S(h) < ∞ and call

EM (h) =
∑

N>M

aN

∫

RN
γ (vN )hN (vN )dvN

SM (h) =
∑

N>M

aN

∫

RN
γ (vN )hN (vN ) log

(
hN (vN )

)
dvN .

By convexity, for every M and every partition B, we get

EM (h) log(EM (h)) ≤ SM (hB) ≤ SM (h) .

Since E(h), S(h) < ∞ for every ε there exists M such that |EM (h) log(EM (h))| ≤ ε/4 and
|SM (h)| ≤ ε/4. This implies that, for every partition B, we have SM (h) − SM (hB) < ε/2.
Moreover, from Lemma 27, for every N ≤ M we can find a partition BN of R such that

s(hN ) − s(hN ,BN
N
) ≤ ε

2M
.

Finally let B be a partition of R that refines every BN for N ≤ M . Since s(hN ,BN
N
) ≤

s(hN ,BN ) ≤ s(hN ), we get

S(h) =
∑

N≤M

aN s(hN ) + SM (h) ≤
∑

N≤M

aN s(hN ,BN ) + SM (hB) + ε = S(hB) + ε


�

Remark 28 An alternative approach to coarse graining is as follows. Let Is be the nor-
malized characteristic function of the segment (−s, s) and let (hs)N = ∫

I⊗N
s (vN −

wN )hN (wN )dwN . Clearly (hs)N is continuous for every N .Moreoverwe have S(hs) ≤ S(h)

andΨ (hs) ≤ Ψ (h), see the argument around (76). Finally, S(hs) →s→0 S(h). Thus, reason-
ing like in (78), we can restrict our attention to continuous states h. In this case, the analogue
of Lemma 27 is simpler to prove. Indeed if hN is continuous, liml→0 d(ql(vN ), hN ) = 0 for
every vN and, since QL is compact, we can find l̄ such that d(ql̄(vN ), hN ) ≤ ε for vN ∈ QL .
In such a situation, the regular partition A built before (109) already provides the solution.

A.5 Derivation of (98) and (102)

We start with (98). Expanding the terms in (33) the form (e(λ̃K−ρN )t fn, φk)k,n using (97)
recursively starting from the most external one gives

lim
n→∞

(
e(λ̃nK+ρ(O−N ))t fn, φk

)

k,n
(110)

= lim
n→∞

∑

q≥0

∑

p0,p1,...,pq≥0

ρqλ|p|
(

ρ

μn

)k+|p| ∑

N≥k+|p|

N !
(N − k − |p|)!

(N + q)!
N ! (111)

·
∫

0≤tq≤···t1≤t

q∏

i=0

(
e−ρ(N+q−i)(ti−ti+1)

(ti − ti+1)
pi

pi !
)
dt1 · · · dtq (112)

·
∫

fN+q(vN+q)(G
∗|p|
k φk)(vk+|p|)dvN+q (113)
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where tq+1 = 0, t0 = t and |p| = ∑q
i=0 pi . Call now

bq,P =
∑

p0,p1,...,pq≥0
|p|=P

∫

0≤tq≤···t1≤t

q∏

i=0

(
e−ρ(N+q−i)(ti−ti+1)

(ti − ti+1)
pi

pi !
)
dt1 · · · dtq .

We first sum over the pi using that

∑

p0,p1,...,pq≥0
|p|=P

q∏

i=0

(ti − ti+1)
pi

pi ! = t p

p! ,

then we integrate over the ti using (35) and we get

bq,P = t p

p!
1

q!e
−ρNt (1 − e−ρt )q

Inserting in (110) gives

lim
n→∞

(
e(λ̃nK+ρ(O−N ))t fn, φk

)

k,n
= lim

n→∞
∑

q≥0

∑

p≥0

t pλp

p!
(

ρ

μn

)k+p

·
∑

N≥k+p

(N + q)!
(N − k − p)! q!e

−ρNt (1 − e−ρt )q
∫

fN+q(vN+q)(G
∗|p|
k φk)(vk+|p|)dvN+q .

Finally we write

(N + q)!
(N − k − p)! q! = (N + q)!

(N + q − k − p)!
(
N + q − k − p

q

)

so that, setting M = N + q and summing over q , we get

lim
n→∞

(
e(λ̃nK+ρ(O−N ))t fn, φk

)

k,n
= lim

n→∞
∑

p≥0

t pλp

p! e−ρ(k+p)t

(
ρ

μn

)k+p ∑

M≥k+p

M !
(M − k − p)!

∫
fN+q(vM )(G∗|p|

k φk)(vM )dvN+q .

and the derivation of (98) is complete.
Turning to (102) we set

Aq(φk) =
∑

p0,p1,...,pq≥0

∫

0≤tq≤···≤t1≤t

q∏

i=0

e−ρ(ti−ti+1)(|p|i−i) (ti − ti+1)
pi

pi ! dt1 · · · dtq

· G∗pq
k+|p|q−q Ik+|p|q−q+1 · · ·G∗p1

k+p0−1 Ik+p0G
∗p0
k φk

For the rest of this section we will neglect the number of variables subscript in order to
make expressions more readable. To understand the structure of Aq(φ ⊗ ψ), first look at
A2(φ ⊗ ψ). Combining (94) and (99) we can write

∑

p0,p1,p2

2∏

i=0

(e−(ti−ti+1)(ti − ti+1))
pi

pi ! G∗p2 IG∗p1 IG∗p0(φ ⊗ ψ)
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=
∑

p10 ,p
1
1 ,p

1
2

∑

p20 ,p
2
1 ,p

2
2

2∏

i=0

(e−(ti−ti+1)(ti − ti+1))
p1i

p1i !
2∏

i=0

(e−(ti−ti+1)(ti − ti+1))
p2i

p2i !
(
G∗p12 IG∗p11 IG∗p10φ ⊗ G∗p22G∗p21G∗p20ψ (114a)

+ G∗p12 IG∗p11G∗p10φ ⊗ G∗p22G∗p21 IG∗p20ψ (114b)

+ G∗p12G∗p11 IG∗p10φ ⊗ G∗p22 IG∗p21G∗p20ψ (114c)

+G∗p12G∗p11G∗p10φ ⊗ G∗p22 IG∗p21 IG∗p20ψ
)

. (114d)

To simplify (114a), we can use that

∑

p20 ,p
2
1 ,p

2
2

2∏

i=0

(e−(ti−ti+1)(ti − ti+1))
p2i

p2i !
(fn,G∗p22G∗p21G∗p20ψ)n =

∑

p

t p

p!e
−t (fn,G∗pψ)n

and similarly for (114d). On the other hand, for (114b) we have

∑

p10 ,p
1
1,p

1
2

∑

p20 ,p
2
1 ,p

2
2

2∏

i=0

(e−(ti−ti+1)(ti − ti+1))
p1i

p1i !
2∏

i=0

(e−(ti−ti+1)(ti − ti+1))
p2i

p2i !

(fn,G∗p12 IG∗p11G∗p10φ)n(fn,G∗p22G∗p21 IG∗p20ψ)n

=
∑

p10 ,p
1
1

∑

p20 ,p
2
1

(e−(t−t1)(t − t1))p
1
0 (e−t1 t1)p

1
1

p10 !p11!
(e−(t−t2)(t − t2))p

2
0 (e−t2 t2)p

2
1

p20 !p21 !

(fn,G∗p11 IG∗p10φ)n(fn,G∗p21 IG∗p20ψ)n .

while (114c) gives a similar expression but for the roles of t1 and t2 that are inverted. Com-
bining these expressions we get

A2(φ ⊗ ψ) = A0(φ)A2(ψ) + A1(φ)A1(ψ) + A2(φ)A0(ψ)

For the general case we can write

q∏

i=0

e−ρ(ti−ti+1)(k+|p|i−i) (ti − ti+1)
pi

pi ! G∗pq+1 I · · ·G∗p1 IG∗p0(φ ⊗ ψ)

=
∑

p1i +p2i =pi

∑

σ1,...σq∈{0,1}
q∏

i=0

e−ρ(ti−ti+1)(k1+|p1|i−i) (ti − ti+1)
p1i

p1i !
G∗p1q+1 I σq · · ·G∗p11 I σ1G∗p10φ

⊗
q∏

i=0

e−ρ(ti−ti+1)(k2+|p2|i−i) (ti − ti+1)
p2i

p2i !
G∗p2q+1 I 1−σq · · ·G∗p21 I 1−σ1G∗p20ψ .

that, after resummation, gives

Aq(φ ⊗ ψ) =
∑

q1+q2=q

∑

p10 ,p
1
1 ,...,p

1
q1+1

≥0

∑

p20 ,p
2
1 ,...,p

2
q2+1

≥0

λ|p1|+|p2|
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∗∑

π

∫

0≤tπ(q1+q2)≤···≤tπ(1)≤t
dt1,1 · · · dt1,q1dt2,1 · · · dt2,q2

q1∏

i=0

e−ρ(t1,i−t1,i+1)(k1+|p1|i−i) (t1,i − t1,i+1)
p1i

p1i !
G∗p1q1+1 I · · ·G∗p11 IG∗p10

k1
φ

⊗
q2∏

j=0

e−ρ(t2, j−t2, j+1)(k2+|p2| j− j) (t2, j − t2, j+1)
p2j

p2j !
G∗p2q2+1 I · · ·G∗p21 IG∗p20ψ

where
∑∗

π is the sum over all one-to-one functions π from {1, . . . , q1 + q2} to the set
{(1, 1), . . . , (1, q1), (2, 1), . . . , (2, q2)} such that if, for i > j and σ ∈ {1, 2}, we have
π(i) = (σ, q) and π( j) = (σ, q ′) then q > q ′. Observing that

∗∑

π

∫

0≤tπ(1)≤···≤tπ(q1+q2)≤t
dt1,1 · · · dt1,q1dt2,1 · · · dt2,q2

=
∫

0≤t1,1≤···≤t1,q1≤t
dt1,q1 · · · dt1,1

∫

0≤t2,q2≤···≤t2,1≤t
dt2,1 · · · dt2,q2

we get

Aq(φ ⊗ ψ) =
∑

q1+q2=q

Aq1(φ)Aq2(ψ) .

Propagation of chaos now follows easily.
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