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Abstract – We compute the Drude weight and the critical exponents as functions of the density
in non-integrable generalizations of XXZ or Hubbard chains, in the critical high- or low-density
regime where the dispersion becomes almost quadratic, the Luttinger liquid description breaks
down and the Bethe ansatz cannot be used. Even in the regions where irrelevant terms dominate,
no difference between integrable and non-integrable models appears in exponents and conductivity
at zero temperature. Our results are based on a fully rigorous two-regime multiscale analysis and
a recently introduced partially solvable model.
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Introduction. – Understanding whether the behavior
of exactly solvable models is generic and persists in the
presence of integrability-breaking terms is a central issue
in physics. Interacting fermionic chains provide an ideal
arena, thanks to the presence of Bethe ansatz solvable
models, like the XXZ or the Hubbard model, and the fact
that cold atoms allow, at least in principle, an experimen-
tal verification [1–3].

Exact solutions provide a rather complete picture, in-
cluding critical exponents and Drude weights at zero tem-
perature for all densities, see, e.g., [4] for a review. The
zero-temperature Drude weight (whose finiteness signals
an infinite conductivity) for the XXZ chain was obtained
in [5]. For the XXZ chain with non-zero magnetic field
a strict lower bound on the Drude weight at finite T was
proven in [6] and in [7–10] it was extended to zero field,
using the construction of quasi-local charges in [8]. The
bounds are derived analytically for infinite temperature
(but the non-zero bound is believed to be true for all T )
and for special values of Δ = cosnπ/m, with n, m coprime
(some arguments have been given to show that the Drude
weight could be vanishing without this condition). Anal-
ogous results are known for the Hubbard model. Dynami-
cal correlations in solvable models are obtained in [11–13].
The Drude weights can be also obtained via dynamical
evolution of partitioned systems [14–22].

The above results rely on integrability which is gener-
ically lost in realistic systems. Luttinger liquid the-
ory [23] predicts the behavior of the Luttinger model
to be generic for non-integrable systems [24]. This was

rigorously proved [25] for static zero-temperature proper-
ties around the half-filled band case, where the disper-
sion relation is essentially linear. These limitations are
necessary; solvable models show that non-linear disper-
sion relations produce behaviors different from that of the
Luttinger model in the dynamical correlations or at finite
temperature; the same is true for static zero-temperature
properties at low or high densities.

For the same non-linear lattice dispersion relation, in-
tegrable or non-integrable interactions differ by irrelevant
terms, usually neglected in the field theoretic Renormal-
ization Group (RG) analysis; for instance, the addition
of a next-to-nearest-neighbor interaction makes the XXZ
model not solvable. The RG irrelevance of these terms
does not make them unimportant. On the contrary, at
positive temperature the Drude weight depends dramati-
cally on the integrability of the interaction [6,8], in analogy
with the classical case [26,27], see also [28–33]. More gen-
erally, irrelevant terms are known to play a crucial role for
transport properties. For instance, they ensure the can-
cellation of all the interaction corrections of the optical
conductivity of graphene [34,35].

The natural question we address here is the following:
for which properties is the behavior found in Bethe ansatz
solvable models at T = 0 generic even when the Luttinger
description breaks down and physics is dominated by ir-
relevant terms, that is in high- or low-density regime? We
answer this question in the case of static zero-temperature
properties, away from the Luttinger linear behavior. This
is achieved via a two-regime non-perturbative RG scheme
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that takes fully into account irrelevant terms. In the sec-
ond regime, in the spinful case we exploit emerging sym-
metries by using a recently introduced QFT model [36]
with a RG flow exponentially close to the flow of the non-
integrable chains. This QFT model is partially solvable
in the sense that only the density correlations can be ob-
tained in closed form.

We find that the critical exponents, in the low- or high-
density limit, tend to their non-interacting value in the
spinless case, while in the spinful case their limiting value
depends strongly on the interaction. In both cases the
Drude weight behaves essentially as in the non-interacting
case. In the special case of solvable interactions, Bethe
ansatz results are recovered.

Our analysis shows that there is no qualitative differ-
ence between integrable and non-integrable models at zero
temperature; the exponents have a similar behavior, the
conductivity is infinite and the limiting value of the Drude
weight is the same. This is true notwithstanding the fact
that in the low- or high-density regime the physics is com-
pletely dominated by irrelevant terms; the behavior found
in Bethe ansatz solvable models is generic at T = 0 even
when the Luttinger description breaks down.

Main results. – We consider a model of interacting
fermions with Hamiltonian

H = −1
2

�

x, σ

(a+
x, σa−

x+1, σ + c.c.) − μ
�

x, σ

a+
x, σa−

x, σ

+λ
�

x, y
σ, σ�

w(x − y)a+
x, σa−

x, σa+
y, σ�a

−
y, σ� , (1)

where a±
x, σ are fermionic creation or annihilation oper-

ators, σ is the spin (σ = 0 in the spinless case and
σ =↑, ↓ in the spinning case), x are points on a one-
dimensional lattice and w(x) is a short-range potential
such that

�
x |x|α|w(x)| < ∞ for some α > 0. In the

spinless case with w(x − y) = δx, y+1 the system re-
duces to the XXZ model and in the spinning case with
λw(x − y) = Uδx, y it reduces to the Hubbard model. For
other choices of the interaction no solution is known.

The truncated Euclidean correlations are

�Ox1 . . . Oxn
� = �T(Ox1 . . . Oxn

)�T ,

where T is the time ordering operator, x = (x0, x), Ox =
eHx0Oxe−Hx0 and �·�T are the thermodynamic truncated
averages. Finally S(x − y) = �a−

x a+
y � denotes the 2-point

correlation function.
The density is ρx =

�
σ a+

x, σa−
x, σ and the current is

defined via the continuity equation that gives

jx =
1
2i

�

σ

(a+
x+1, σa−

x, σ + a+
x, σa−

x+1, σ).

Writing p = (p0, p), the (Euclidean) zero-temperature
Drude weight D and the susceptibility κ are given by

κ = lim
p→0

lim
p0→0

�ρ̂pρ̂−p�T and D = lim
p0→0

lim
p→0

D(p)

with D(p) = �ĵp ĵ−p�T + Δ and

Δ = −1
2

�

σ

�a+
x, σa−

x+1, σ + a+
x+1, σa−

x, σ� .

Here f̂(p) represents the Fourier transform of f(x). A
Ward Identity (WI) gives p2

0�ρ̂pρ̂−p� = 4 sin2 p/2D(p)
which implies that

lim
p→0

lim
p0→0

D(p) = lim
p0→0

lim
p→0

�ρ̂pρ̂−p� = 0 .

Note that D(p) is not continuous at p = 0 and it is essen-
tial to take the limits in the correct order. Moreover, the
limit p0 → 0 should be taken along the imaginary axis,
but the Wick rotation holds for this model [37].

In the non-interacting case the dispersion relation is
− cosk and the Fermi momentum pF is defined by μ =
− cospF . We are interested in the low- or high-density
regime, that is for Fermi momentum close to pF = 0
(empty band) or pF = π (filled band) where the dispersion
relation is almost quadratic. In the presence of interaction,
at fixed μ, the Fermi momentum becomes interaction de-
pendent; we find more convenient to fix the Fermi mo-
mentum to be given by − cospF = ±1 ∓ r ≡ μR, with r
small and μR = 1 in the empty band case while μR = −1
in the filled band case. This is achieved by choosing an
interaction-dependent chemical potential μ = μR + ν with
ν = ν(λ) suitably chosen. The values of the chemical po-
tential corresponding to pF = 0, π are called μc = ±1 + ν.

Theorem. Consider the Hamiltonian (1) with μ = μR +
ν(λ, r) and μR = − cospF = ±1 ∓ r. Then we have

D =
Kv

π
and κ =

K

πv
,

where:
– in the spinless case for |λ| small we have

ν(λ, r) = 2λŵ(0)
pF

π
+ O(λr),

while

K =
1 − τ

1 + τ
,

v = sin pF (1 + O(λrϑ)) ,

τ = λ
ŵ(0) − ŵ(2pF )

2πv
+ O(λ2rϑ) ,

with ϑ ∈ (1/3, 1/2);
– in the spinful case for λ̃ = λ

sin pF
≥ 0 small we have

ν(λ, r) = O(λ̃
√

r), while

K =

�
(1 − 2νρ)2 − ν2

4

(1 + 2νρ)2 − ν2
4

v2 = v̄2 (1 + ν4)2 − 4ν2
ρ

(1 − ν4)2 − 4ν2
ρ

,

where

v̄ = sin pF (1 + O(λ̃rϑ) + O(λ̃2)) ,

ν4 = λ̃
ŵ(0)
2π

+ O(λ̃2) ,

νρ =
λ̃

2π

�
ŵ(0) − ŵ(2pF )

2

�
+ O(λ̃2) .
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Fig. 1: The main graph is the Drude weight D at fixed λ in
the spinless case. The inset shows K.

In both cases, S(x−y) decays for large distance as |x|1+η

with 2η = K + K−1 − 2.
In the Theorem r is a parameter that measures the dis-

tance of μ from the critical chemical potential μc. In the
spinless case μc is shifted by the interaction and we get
μc = 1 + 2λŵ(0) for μR = 1 and μc = −1 for μR = −1.
In the XXZ chain hc + λ = μc. When r → 0 we get
K → 1 and D/ sin pF → 1

π , that is the critical exponent
and the Drude weight tend to their non-interacting values.
Figure 1 shows the behavior of D and K as a function of
the density close to the critical point; in the XXZ case it
closely reproduces the features found by the exact solu-
tion, see, e.g., fig. 1 in [38] or fig. 1 in [39].

In the spinful case we rescale the interaction as λ =
λ̃ sin pF . In terms of λ̃ our results hold uniformly in r.
In contrast with the spinless case, the theory is strongly
interacting since at criticality we have K → 1− λ̃ŵ(0)/π+
O(λ̃2). A remarkable cancellation takes place in the Drude
weight and D behaves as in the non-interacting case when
r → 0 (at least up to O(λ̃2) terms), that is

Dπ

v̄
=

1 + ν4 − 2νρ

1 − ν4 + 2νρ
∼ 1

for r ∼ 0. Such a behavior is present in the Hubbard
model, but it is proven here to be a generic feature. It
was missed in previous attempts based of field theoretic
RG methods. Figure 2 shows the behavior of D and K for
integrable and non-integrable interactions, as a function
of λ and λ̃. In the Hubbard case fig. 2 reproduces Bethe
ansatz result (e.g., figs. 9.2, 9.3 of [4] or figs. 13, 14 of [40]).

RG analysis: the quadratic regime. – We write the
Euclidean correlations in terms of a Grassmann integral

eW (A,φ) =
�

P (da)e−V−νN+B(A,φ),

where P (da) is a Grassmann integration on the
Grassmann algebra generated by the variables a±

x, σ with
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Fig. 2: The main graph is the Drude peak D at fixed λ for
the spinful case. The upper inset shows K at fixed λ̃ while the
lower inset shows K as a function of λ. Colors and dashes are
as in fig. 1.

propagator

g(x − y) =
1

4π2

�
e−ik(x−y)ĝ(k) dk,

where
ĝ(k) =

1
−ik0 − cos k + cos pF

.

Moreover V is the interaction and νN = ν
�

dx a+
x, σa−

x, σ is
a counterterm introduced to take into account the renor-
malization of the chemical potential, that is we write
μ = μR + ν with μR ≡ cos pF . Finally B(A, φ) is a
source term. Differentiating W (A, φ) with respect to φ
produces correlations of fermionic fields, while differenti-
ating with respect to A produces correlations of currents or
densities.

The starting point of the RG analysis is the
decomposition

ĝ(k) =
1�

h=−∞
f̂h(k)ĝ(k) =

1�

h=−∞
ĝ(h)(k), (2)

where f̂h(k) is a compact support function which is non-
vanishing only for

�
k2
0 + (cos k − cos pF )2 ∼ 2h, see fig. 3.

From eq. (2) and the properties of Grassmanian integra-
tions we have that we can write a±

x, σ =
�1

h=−∞ ah, ±
x, σ with

P (da) =
�1

h=−∞ P (dah). This decomposition naturally
leads to identify two regions, separated by the energy scale
2h∗ ∼ r; in the region where the energy is greater than
r the dispersion relation is essentially quadratic, while
for smaller energies it is essentially linear with a slope
of sin pF ∼ √

r.
In the high-energy region where h ≥ h∗ the single

scale propagator satisfies the scaling relations g(h)(x) ∼
2h/2g(0)(2hx0, 2h/2x) and the scaling dimension is D1 =
3/2 − l/4 − m/2, where l is the number of a fields and m
the number of A fields.
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Fig. 3: Schematic representation of the support Ah of the prop-
agator g(h)(k) as a function of h.

We focus on the A = φ = 0 case. We define the effective
potential on scale h recursively as

V h(a≤h) = log
�

P (dah)eV h+1(a≤h+1),

where a≤h =
�h

k=−∞ ak. It can be written as

V h = LV h + RV h ,

where RV h is sum of all irrelevant terms, that is mono-
mials in the fields with D1 < 0 while

LV h = 2
h
2 λhFλ + 2hνh

�

σ

�
dx a+, ≤h

x, σ a−, ≤h
x, σ

+ih
�

σ

�
dx a+, ≤h

x, σ ∂0a
−, ≤h
x, σ + δh

�

σ

�
dx a+, ≤h

x, σ ∂2a−, ≤h
x, σ

(3)
where

Fλ =
�

dx a+, ≤h
x, ↑ a−, ≤h

x, ↑ a+, ≤h
x, ↓ a−, ≤h

x, ↓

in the spinful case and Fλ = 0 if the fermions are spinless.
Notice the absence of the term

�
a+
x, σ∂a−

x, σdx and of local
terms with six fields due to parity and the Pauli principle,
respectively.

After integrating the field ah we obtain V h−1 as a sum
of monomials in the fields, that is

V h−1(a≤h−1) =
�

Wh−1
l (x1, . . . ,xl)

l�

i=1

a≤h−1
xi

,

where W h−1
l is expressed as a series in the running cou-

pling constant (r.c.c.) ηh = (νk, ik, δk, λk) (with λk ≡ 0
in the spinless case), k ≥ h. We can now write V h−1 =
LV h−1 + RV h−1 as in (3) with h − 1 replacing h and use
the local terms to compute the r.c.c. on scale h − 1. This
produces an expansion of the kernels W h

l in terms of the
r.c.c.. Calling �h = maxk>h |ηk|, we get

||Wh−1
l || ≤ 2h(3/2−l/4)

�

n

Cn�n
h.

Convergence in the r.c.c. follows from determinant
bounds [41], which imply convergence in λ if the r.c.c.
remains close to their initial value during RG iteration.

The above construction gives the recursive relation

ηh−1 = ηh + βh(ηh, . . . , η0) .

The flow generated by βh can be analyzed rigorously as
in [41]. The main observation is that at r = 0 all graphs
with a closed fermionic loop vanish while the tadpole
graph gives the shift of the chemical potential. Therefore,
in the spinless case we get |ih|, |δh| ≤ Crϑ|λ| where the fac-
tor rϑ is due to the irrelevance of the quartic terms. Sim-
ilarly the contribution to ν consists of the tadpole graph
plus O(λr).

In the spinful case we must also consider λh which obeys
the recursive relation λh−1 = 2

1
2 λh − aλ2

h + O(λ3
h) with

a > 0, from which |λh∗ | ≤ C|λ̃|. We thus see a non-trivial
fixed point that lies outside our convergence radius. For
the other r.c.c. we get |ih∗ |, |δh∗ | ≤ Crϑ|λ| + O(λ̃2) while
the contribution to ν consists of the tadpole graph plus
O(λr)+O(λ̃2), see also appendix A. This is due to the lack
of the dimensional gains of the spinless case for graphs of
higher order.

RG analysis: the linear regime. – After the inte-
gration of the fields a1, a0, . . . , ah∗

we arrive at a functional
integral of the form

�
P (da≤h∗

)e−Vh∗
(a), where P (da≤h∗

)
has a propagator that depends only on the momenta in two
disconnected regions around the 2 Fermi points (0, ±pF ),
see fig. 3. Therefore, we write a≤h∗

as the sum of 2 inde-
pendent fields

a≤h∗
=

�

ω=±
eiωpF xa≤h∗

ω, x

with propagator

ĝ(≤h∗)
ω (k) =

f̃≤h∗(k)
−ik0 + ωvh∗k

+ r̂h∗
(k) ,

where vh∗ = O(
√

r), and f̃≤h∗(k) is different from 0 only
if k2

0 + v2
h∗k2 ≤ 2h∗

. Finally r̂(k) is a bounded correc-
tion. In this case the scaling dimension is D2 = 2 − l/2;
we write again V h = LV h + RV h, where RV h contains
all terms with negative scaling dimension while LV h con-
tains νh, the renormalization of the chemical potential,
and the quartic terms (quadratic marginal terms produce
the wave function renormalization Zh and the renormal-
ized Fermi velocity vh). In the spinless case the quartic
local terms have the form λh

�
dxa+, ≤h

x, + a−, ≤h
x, + a+, ≤h

x, − a−, ≤h
x, −

with

λh∗ = λ(ŵ(0) − ŵ(2pF ))

+
0�

k=h∗

(W k
4 (pF , pF , −pF , −pF ) − W k

4 (pF , −pF , −pF , pF )).

Due to the parity of the interaction, the first term is O(λr)
while the second is close to p2

F ∂2W k
4 . Since

0�

k=h∗

|∂2W k
4 | ≤

0�

k=h∗

λ22h(−1/2+ϑ) ≤ Cλ2r−1/2+ϑ,

we get λh∗ ∼ O(λr
1
2+ϑ), so that it vanishes as r → 0.

In the spinful case there are three local quartic terms (if
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pF �= π/2):

– g1, h

�
a+
x, ω, σa−

x, −ω, σa+
x, −ω, σ�a

−
x, ω, σ� with g1, h∗ =

2h∗/2(2λ̃ŵ(2pF )+O(λ̃2)), where the 2h∗/2 comes from
the scaling dimension;

– g2, h

�
a+
x, ω, σa−

x, ω, σa+
x, −ω, σ�a

−
x, −ω, σ� with g2, h∗ =

2h∗/2(2λ̃w(0) + O(λ̃2));

– g4, h

�
a+
x, ω, σa−

x, ω, σa+
x, ω, σ�a

−
x, ω, σ� with g4, h∗ =

2h∗/2(2λ̃w(0) + O(λ̃2)).

The integration over the time variables produces a factor
v−n+1 which is compensated by the vn of the coupling,
so that the convergence radius (in λ for the spinless case
or λ̃ for the spinful case) is r independent. Observe that
the small factor in the effective coupling is produced es-
sentially by the Pauli principle in the spinless case, while
it follows from our choice λ = λ̃ sin pF in the spinful case.

Finally we have to discuss the flow of the running cou-
pling constants. The single scale propagator ĝh(k) is the
sum of a “relativistic” part

ĝh
ω, rel(k) =

1
Zh

f̃h(k)
−ik0 + ωvhk

and a correction r̂h(k), smaller by a factor 2h

v2
h∗

, that takes
into account the non-linear corrections to the dispersion
relation. In the spinless case the beta functions for λh

and vh are asymptotically vanishing (i.e., the only contri-
butions come from the corrections r̂h), while

|βh
λ | ≤ C

λ2
h

vh∗

2h

v2
h∗

and |βh
δ | ≤ Cλh

2h

v2
h∗

.

Thus, we get |λh| ≤ Cλr1/2+ϑ, while v−∞ = sin pF (1 +
O(λrϑ)). Finally we have Zh ∼ Zh∗2−ηh with η =
ηi(

λ−∞
v−∞

), see also appendix B.
In the spinful case if λ > 0, we get g2, h → g2, −∞ and

g4, h → g4, −∞ with g2, −∞ = g2, h∗ − g1, h∗/2 + O(λ̃2r1/2)
and g4, −∞ = g4, h∗ + O(λ̃2r1/2). Finally we have g1, h ∼

g1, h∗
1−ag1, h∗ (h−h∗) → 0 as h → −∞. Similarly we get v̄ =

sin pF (1 + O(λ̃rϑ) + O(λ̃2)).

Emerging chiral model. – Here we focus on the
spinful case, since the spinless one is a special case of the
following discussion. In the second regime a description of
relativistic chiral fermions emerges, up to irrelevant terms,
and one needs to exploit its symmetries. A way to do
that is to introduce a reference model whose parameters
can be fine tuned so that the difference between the
running coupling constants of the non-integrable chain
and those of the reference model is small. The somewhat
natural choice of the Luttinger model does not work, as
the difference produced by the g1 coupling vanishes in a
non-summable way.

We introduce a model [36] of fermions ψ±
ω, σω = ± with

propagator

ĝh
ω, chi(k) =

1
Z

f̃≤N (k)
−ik0 + ωvk

and interaction given by V = ḡ1F1 + ḡ2F2 + ḡ4F4, where

F1 =
1
2

�

ω, σ, σ�

�
w̃(x − y)ψ+

x, ω, σψ−
x, ω, σ�ψ

−
y, −ω, σψ+

y, −ω, σ� ,

F2 =
1
2

�

ω, σ, σ�

�
w̃(x − y)ψ+

x, ω, σψ−
x, ω, σψ−

y, −ω, σ�ψ
+
y, −ω, σ� ,

F4 =
1
2

�

ω, σ, σ�

�
w̃(x − y)ψ+

x, ω, σψ−
x, ω, σψ−

y, ω, σ�ψ
+
y, ω, σ� .

Here w̃(x) is a short-range interaction, with range r0 and
ŵ(0) = 1. Setting

j̃0,x =
�

ω

ρ̃ω, x , j̃1, x =
�

ω

ωρ̃ω, x ,

with ρ̃ω, x =
�

σ ψ+
ω, σψ−

ω, σ, we get the WI for the
fermionic correlations

−ip0A0�ˆ̃j0, pψ̂−
k+p, σψ̂+

k, σ�T

+pvA1�ˆ̃j1, pψ̂−
k+p, σψ̂+

k, σ�T =
1
Z

�
�ψ̂−

k+p, σψ̂+
k+p, σ�T − �ψ̂−

k, σψ̂+
k,σ�T

�
, (4)

where A0 = (1 − ν4 − 2νρ), A1(1 + ν4 − 2νρ), ν4 = ḡ4/4πv

and νρ = (ḡ2 − ḡ1/2)/4πv. Similarly, if P̃ω = −ip0 + ωvp,
the density correlations verify

P̃ω� ˆ̃ρp, ω
ˆ̃ρ−p, ω��T − ν4P̃−ω� ˆ̃ρp, ω

ˆ̃ρ−p, ω��T

−2νρP̃−ω� ˆ̃ρp, −ω
ˆ̃ρ−p, ω��T = −δω, ω�

P̃−ω

2πZ2 . (5)

Note in the above WI the presence of the anomalies, that
is the terms in νρ and ν4, which are linear in the couplings
ḡi. The model differs from the Luttinger model for the
presence of the ḡ1 term; it is however defined so that it is
invariant under the chiral phase transformation

ψ±
x, ω, σ → e±iαx, ωψ±

x, ω, σ

which implies, thanks to (5), that the density correla-
tions can be explicitly computed even if the model is not
solvable, see [25,36]. We choose w̃ of the form w̃(x) =
w̄(x2 + x2

0/v2), where w̄ has range r0 = 2−h∗
and sat-

isfies
�

dx|w̃(x)| = 1. It acts as an ultraviolet cut-off
that allows us to integrate safely the scales h ≥ h∗ and
arrives at an effective potential V

h∗
, differing from V h∗

discussed in the previous section by irrelevant terms. We
can choose the bare parameters ḡi, v of the reference model
so that its running coupling constants differ from those of
model (1) by exponentially decaying terms O(2ϑh) and
the ratio of the Z tends to 1; this is achieved by choosing
ḡi = gi,h∗ +O(

√
rλ̃2)) and v = sin pF (1+O(λ̃rϑ)+O(λ̃2)).

This implies that

D(p) =
Z2

1

Z2 �ˆ̃j1, p ˆ̃j1, −p�T + R0(p), (6)

where Z1 is the current wave function normalization
and R0(p) is a continuous function in p (in contrast
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with the first addend in the r.h.s.); we use the WI
limp→0 limp0→0 D(p) = 0 to fix R0(0) so that we get

D(p) =
Z2

1

πZ2vv1

[(1 + ν4 + 2νρ) + v2
2(1 − ν4 − 2νρ)]p2

0

p2
0 + v2

2v2p2

with v2
2 =

(1+ν4)2−4ν2
ρ

(1−ν4)2−4ν2
ρ
, v1 = (1 + ν4)2 − 4ν2

ρ . The identity

�jpa−
k+pF , σa+

k+p+pF , σ�T = Z1�j̃1, pψ−
k+p, σψ+

k, σ�T

allows us to fix Z1, Z; indeed comparing (4) with the WI
for the chain

−ip0�ρ̂pâ−
k, σa+

k+p, σ�T + p�ĵpâ−
k, σa+

k+p, σ�T =

�â−
k, σa+

k, σ�T − �â−
k+p, σa+

k+p, σ�T (7)

we get the consistency relation

Z1

Z
= v(1 + ν4 − 2νρ).

Proceeding in a similar way for the susceptibility we obtain
the expressions in the Theorem.

Conclusions. – We analyze non-integrable generaliza-
tions of the Hubbard chain in the low- and high-density
regimes where the Luttinger description breaks down. Our
methods are based on a multiscale decomposition of the
propagator of the theory and are able to take into account,
in a rigorous and quantitative way, the irrelevant terms
normally neglected in the RG analysis. Our main con-
clusion is that no qualitative difference between solvable
and non-solvable models is seen in exponents and con-
ductivity at zero temperature, even in regions where the
Luttinger liquid description is not valid and the physics is
completely dominated by irrelevant terms. Both for inte-
grable and non-integrables models, the anomalous critical
exponents vanish or do not depend on the spinless or spin-
ful nature of fermions, while the Drude weight tends to the
same non-interacting values independently of the presence
of spin. Such results have been established by rigorous RG
methods able to take into account irrelevant terms. The
possibility of extending such methods to deal with the is-
sue of finite-temperature Drude weight in non-integrable
models is an important open question.

Appendix A: flow of the running coupling con-
stants in the quadratic regime. – We give some extra
detail on the flow of the r.c.c. in the quadratic regime.
Note that at r = 0 and T = 0 we have

– empty band case: pF = 0, e(k) = − cosk + 1, and

g(x) = χ(x0 > 0)
� π

−π

dk

2π
e−ikx−e(k)x0 ;

– filled band case: pF = π, e(k) = − cosk − 1, and

g(x) = −χ(x0 ≤ 0)
� π

−π

dk

2π
e−ikx−e(k)x0 .

Therefore, all the graphs with order greater than 1 with
two external lines are vanishing if computed at the Fermi
points and r = 0. Indeed all one-particle reducible graphs
are vanishing due to the support properties of the propa-
gator. This implies that there is always a closed fermionic
loop which vanishes as the propagator is proportional to
χ(x0 > 0) or χ(x0 ≤ 0). At first order there are two con-
tributions: the tadpole graph at r = 0 contributes only to
ν and gives 2λŵ(0)pF /π with pF = 0, π; the other graph
is vanishing for non-local interactions (the local potential
does not contribute) since v(x−y)g(x−y) is proportional
to v(x, y)δx,y = 0.

The flow equations for ih, δh have the form ih−1 = ih +
βh

i , δh−1 = δh + βh
i . In the spinless case the fact that

there are no quartic running coupling constants produces
an improvement of O(2hϑ) with respect to the dimensional
bound. As we noticed above all the contributions with two
external lines computed at the Fermi points are vanishing
for r = 0, except for the tadpole which contributes only
to νh. There is therefore a gain r2−h in the beta function
for z, δ, and a further gain 2hϑ (due to the irrelevance of
the quartic terms if the order is greater then 1 and to the
fact that the derivative can be applied on the interaction
at first order), so we get |ih|, |δh| ≤ �1

k=h C|λ|r2−k2kϑ

and finally zh∗ , δh∗ = O(λrϑ). The same argument can be
used for the renormalization of the chemical potential νh

and ν0 is the tadpole plus
�1

h=h∗ λ2hr2−h2ϑh = O(λr); as
a consequence the shift of the critical chemical potential
is linear in λ as stated in the Theorem.

In the spinful case, the contributions at first order to
the flow of ih, δh give λ̃

�
h≥h∗ r2−h2ϑh ≤ Crϑλ̃ for the

same reason as in the spinless case. There is, however,
no gain due to the irrelevance of the interaction at larger
orders so that they give λ̃2C

�
h≥h∗ r2−h ≤ Cλ̃2 as the

quartic terms are now relevant. Finally, the value of ν is
the tadpole plus

�1
h=h∗ λ̃2hr2−h = O(λ̃

√
r).

Appendix B: flow of the running coupling con-
stants in the linear regime. – In the spinless case the
beta functions for λh and vh are convergent and asymp-
totically vanishing, |βh

λ | ≤ C
λ2

h

vh∗
2h

v2
h∗

, |βh
δ | ≤ C

λ2
h

v2
h∗

2h

v2
h∗

. As-

suming inductively that |λh| ≤ Cλr1/2+ϑ and using that
2h

v2
h∗

≤ 2h−h∗
one gets that

|λh−1 − λh∗ | ≤
h∗�

k=h

r1+2ϑ λ2

vh∗
2k−h∗ ≤ Cλ2r1/2+ϑ (8)

and v−∞ = vh∗ + O(λ2
h∗

v2
h∗

) ∼ r
1
2 . Moreover, Zh−1

Zh
=

1 + β1
z + β2

z , where β2 contains the contributions from
the irrelevant terms, like the quadratic corrections to the
dispersion relation, and is O(λ γh

vh∗ ). Finally at first or-
der δh has contributions only from non-local terms, the
derivative is applied on the interaction and is bounded by
λ/v

�
k≤h∗ 2k both in the spinful and in the spinless case.
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