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Properties of Stationary Nonequilibrium States in the
Thermostatted Periodic Lorentz Gas I:
The One Particle System
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We study numerically and analytically the properties of the stationary state of
a particle moving under the influence of an electric field E in a two dimensional
periodic Lorentz gas with the energy kept constant by a Gaussian thermostat.
Numerically the current appears to be a continuous function of E whose
derivative varies very irregularly, possibly in a discontinuous manner. We argue
for the non differentiability of the current as a function of E utilizing a symbolic
description of the dynamics based on the discontinuities of the collision map.
The decay of correlations and the behavior of the diffusion constant are also
investigated.

KEY WORDS: Thermostatted Lorentz gas; steady state current; smoothness;
regularity; symbolic dynamics.

1. INTRODUCTION

There has been recently much interest in modeling stationary non-
equilibrium states (SNS) of physical systems by closed dynamical systems
evolving under a deterministic (time-reversible) non-Hamiltonian dynamics
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[H, EM, GC]. This is in contrast to modeling by ``open'' systems with
some stochastic dynamics at the boundaries or by Hamiltonian coupling to
infinite reservoirs [EPR1, EPR2]. Some such modeling is necessary to
obtain SNS since the Hamiltonian evolution of an isolated system will only
permit equilibrium stationary states (or some very unstable measures).

The dynamical system models modify the Hamiltonian time evolution
by the addition of purely formal (i.e., having no connection with the actual
dynamics of the system) thermostats such as a Gaussian thermostat. This
keeps the kinetic or total energy of the nonequilibrium system, e.g., one
subjected to external forces which do work on it and drive it away from
equilibrium, constant in time thereby permitting a SNS to exist. Such a
model of a stationary current carrying state produced by a steady electric
field E acting on the charges in a toroidal conductor (periodic boundary
conditions) was first introduced by Moran and Hoover [MH]. Various
aspects of this model were later studied both analytically and numerically
[LNRM, CELS]. It is however still not clear how well this dynamical
system with its nonphysical way of extracting the heat generated by the
current really models the essential features of electrical conduction in a
physical system. This seems relevant to deciding on the utility of this
``thermostatted'' approach in nonequilibrium statistical mechanics. To
answer this question we present here and in subsequent works detailed
numerical and analytical studies of a class of such models describing
stationary states of current carrying systems [CELS]. The system studied
in the present work is the original [MH] model of a single particle moving
among a periodic two dimensional array of fixed scatterers (Sinai billiard)
in the presence of an external field E and a Gaussian thermostat which
keeps its kinetic energy fixed, see Fig. 1. In [BDLR, BDGL] we consider
the generalization of this model to N-particles, N�2, see also [BGG].

The equations describing the motion of the particle, including elastic
scattering with the obstacles, are:

{
q* =v

(1.1)
v* =E&:(v) v+Fobs(q)

:=
(v } E)
(v } v)

where Fobs(q) represents (symbolically) the collisions with the obstacles,
the mass of the particle is set equal to unity and E=Eê with |ê|=1.

The dynamics clearly keeps the kinetic energy v2�2 fixed so we can set
v=v0 v̂ where v̂ is a unit vector v̂=(cos �, sin �). The motion thus takes
place on the three dimensional surface of constant energy which is the
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Fig. 1. General billiard structure with scatterers of radius R1 and R2 in a periodic box with
side length l.

direct product of a torus (with holes due to the obstacles) and the circle
with radius v0 . The microcanonical or uniform distribution on this three
dimensional energy surface is invariant under the dynamics when E=0.
For E{0 the dynamics is not Hamiltonian. There is in fact a phase space
contraction # on the energy surface equal to (E } v)�v2

0 [MH, GG, CELS].
Defining a new dimensionless time (v0 �l) t where l is a characteristic

length of the system (say half the length of the torus) and scaling q by l,
v by v0 and E by l�v2

0 leave the dynamics unchanged. We shall therefore
take from now on l=2 and v0=1 (we choose l=2 because in this way we
can see the obstacle as having centers at (0.0) and (1,1)). Then given any
initial absolutely continuous density �0(�, q) we shall be interested in the
time evolved density �t(�, q) in the limit when t � �. This limit, when it
exists, describes the stationary nonequilibrium state (SNS) of this system.

Moran and Hoover [MH] carried out extensive numerical studies of
�t , or more precisely of the induced measure &t on the Poincare� cross
section parametrized by the points P=(:, ;) # S1_[&?�2, ?�2], : corre-
sponding to the angle locating the point on the perimeter of the obstacle
where the collision took place and ; to the angle between the normal vec-
tor at : and the unit velocity vector v̂ (see Subsection 2.1 for a more precise
definition). Following the discrete time trajectory Pn (in their case there
was only one obstacle per unit cell of the triangular lattice, in the case of
the billiard in Fig. 1 one should add an integer component to Pn , i.e., Pn=
(:, ;, s) where s # [0, 1] indicates which obstacle is hit) they found that the
density of points for large n had a fractal appearance, i.e., the stationary
measure appeared to be singular with respect to the uniform (microcanoni-
cal) measure (4?)&1 cos : d: d, on P which is stationary and approached
(in a weak sense) as t � � when E=0.

This model was later studied analytically by Chernov et al. [CELS]
who proved for E small enough |E|<E0 , E0<<1 (possibly as small as
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10&20) that starting with any initial density �0(%, q) there does indeed exist
a limiting measure on the Poincare� section as t � � &t � &+

E , whose
Hausdorff dimension is, for E{0, strictly less than two (the corresponding
measure ++

E on the energy surface has Hausdorff dimension less than
three). They also showed that the stationary current J(E)=(v) E=_0 E[1+
o( |E| )] where ( } ) E is the average with respect to ++

E and _0 (generally a
tensor) is given by the Kubo formula. (It also follows from their analysis
that j(E) is continuous for |E|<E0 .) Recent work by Wojtkowski [W]
suggests that it may be possible to extend the results of [CELS] to larger
value of |E|; he found a precise value E0 below which the system is hyper-
bolic.

In the present work we examine j(E) and other properties of the
stationary measure &+ for E # (0.025, 2) and ê=x̂, i.e., the field is in the x
direction and so j(E)= j(E ) x̂. Carrying out a numerical evaluation of the
Kubo formula for _0 (i.e., an integral of the autocorrelation function at
zero field) we find good agreement with the results of the simulation for
j(E ) as E tends towards zero. A similar investigation, with less precision for
small values of E, was carried out for a triangular geometry in [LNRM],
where the results, which look similar to ours for E not too small, were
analyzed in terms of periodic orbits. Here we focus on the behavior of the
current for E # (0.025, 0.5) where rather precise numerical simulations
indicate nonsmooth behavior of j(E ) vs E. In particular we analyze the
apparent singularities of &+

E as a function of E in terms of the change in the
singularities of the map from Pn to Pn+1 caused by grazing collisions as E
changes. We also analyze the formal expression for the derivatives of j(E )
obtained from the Kawasaki formula [CELS], and the equivalent Ruelle
formalism [R]. We identify possible origins of singularities and argue for
a function j(E ) that is non differentiable or, at most, admits a weak
derivative with a dense set of discontinuities although the non rigorous
nature of our argument, does, not permit a definitive statement (a similar
statement should hold for the dependence of j(E) on ê).

It should be noted that, as shown in [ER] the stationary current is
directly related to the sum of the stable and unstable Lyapunov exponents
of the system via the equality ( j(E) } E)=&[*s(E)+*u(E)]. There is also
a relation between the Hausdorff dimension of ++ and the Lyapunov
exponents DH(&+)=1&*u(E)�*s(E) (remember that *s(0)+*u(0)=0 but
*s(E)+*u(E)<0 for E{0).

In addition to j(E) we also investigate the diffusion constant d(E )
relative to the drift as a function of E and compare it to d j(E )�dE, equality
constituting in the limit E � 0 the Einstein relation proven in [CELS].
Finally we compute the decay of the velocity autocorrelation function for
E{0 and analyze the numerical results using the methods developed in
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[GC]. We find that the decay continues to be exponential (this was proven
for E=0 in [Y]) with an oscillatory behavior which changes qualitatively
at or close to those values of E at which we see the nonsmooth behavior
in the higher derivatives of j(E).

2. CURRENT VERSUS FIELD: RESULTS AND DISCUSSION

We first describe the results of our simulations and then discuss
possible theoretical explanations of their most interesting features.

2.1. Numerical Results

We used three different methods to compute the current as a function
of the field for the model in Fig. 1 with R1=0.39, R2=0.794 and |v|=1.
The first and the last are based on the fact that the system appears to be
ergodic for E�2 (this has been proved only for the case when the field is
very small, see [CELS]). This allows us to compute the current by choosing
a ``typical'' initial point and evolving it for a very long time while measur-
ing the time average of the instantaneous current.

The simulations were done by computing a trajectory of 109 successive
collisions. The only difficulty in the algorithm is in computing the suc-
cessive collision times in a fast enough manner without missing collisions
that are nearly tangent. Our algorithm is based on a Newton method: it
takes around 20 hours to compute 109 successive collisions on a i586 pro-
cessor with a 350 Mhz clock under a Linux operating system. The values
of }(E )= j(E )�E obtained by the simulation are represented by the filled
points in Fig. 2. The error-bars are computed by running 10 independent
initial conditions and looking at the maximum and minimum values
obtained in this way. It is reasonable to believe that, while the value of the
current averaged over a long time T goes to 0 as the field goes to 0, the
fluctuations about that average with respect to the initial point should be
more or less independent of E. Considering the heavy numerical work
needed to evolve 10 points for 109 successive collisions we did it for
E=0.025, 0.05, 0.1, 0.125, and 0.175 and interpolated linearly for the error-
bar at other points (the reason of the choice to leave out only E=0.75,
0.150, and 0.2 is because we think nothing new happens there in a sense
that will become clear in the following subsection).
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to point particle moving among scatterers with radii R1=0.39 and R2=0.79.
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Fig. 2. Conductivity as a function of the field E. The filled circles represent the result from
the time average on a single long trajectory with their error-bar. The crosses represent the
result from the Kawasaki simulation. No error-bar is reported in this case (except for the
value at E=0) to enhance readability. In any case the errors on the Kawasaki values are
larger than the ones on the long time averages.

To obtain more confidence in our numerics we also computed }(E )
using the Kawasaki formula which allows us to compute also }(0) (for a
rigorous proof of this formula when E is very small see [CELS]). Letting
SE (t, X ), with X=(q, v), be the evolution generated by (1.1) and calling
J(X ) the velocity component along the x-direction, then j(E )=(J(X )) E

with ( } ) E representing the average with respect to ++
E , one has the

Kawasaki formula [CELS],

}(E )=|
�

0
dt(J(X ) J(SE (t, X ))) 0 (2.1)

where ( } ) 0 represents the average with respect to the microcanonical dis-
tribution corresponding to ++

0 . Observe that Eq. (2.1) reduces for E=0 to
the well known Green�Kubo expression for the linear response to an exter-
nal field.
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There are two problems in using Eq. (2.1) numerically. The first is the
necessity of a very good random number generator for the initial condi-
tions and the second is the impossibility of integrating the correlation func-
tion for long times if one wants to have good statistics. We solved the first
problem by using a R250 generator (see [NR]) and, to ensure a better
independence, we decorrelated the initial points by evolving then for 40
collisions without field. In this situation we observed that at a time equal
to 50 times the mean free flight time the correlation function in Eq. (2.1)
is of the order of 10&4 allowing us to say that the truncation error is
probably much smaller than the statistical error due to the fact that we
evolved only 2 } 106 initial conditions. Observe that in this case we can
assume that our experiment consists in the independent sampling of a ran-
dom variable so that we can estimate the statistical error by its standard
deviation divided by the square root of the number of initial points. We
observe finally that this method, although numerically demanding, is
theoretically more reliable than the first method used to get the filled points
in Fig. 2 due to the intrinsic instability of the dynamics under considera-
tion, see [GG] for a more precise discussion.

The results of this simulation are also plotted in Fig. 2 using crosses.
We report the error bar only for the value at E=0 to maintain readability
of the graphs. We note that the error-bars for E>0 are approximatively
twice that at E=0 (simulations at E=0 are much easier and faster). Due
to the symmetry of our system we clearly have that }(E )=}(&E ) so,
assuming that }(E ) is a smooth function of E we should be able to fit it
for small E by }(E )=}(0)+}"(0) E 2. Such a fit is indeed possible (in par-
ticular ones would find }(0)=0.169 and }"(0)=0.53) but it will pass only
through the error-bars of the first three points. From the fourth point on
the graph has a very linear appearance (to be precise we can fit it well by
}(E )=0.169+0.042E ). The problem with this linear fit is that it would
produce a discontinuity of the first derivative of }(E ) at some value of
E # (0.05, 0.075). Moreover, due to the very large error-bars near E=0, it
is easy to see that the linear fit for E>0.075 passes through the error-bars
of all the points leaving open the possibility of a discontinuity of the first
derivative of j(E ) at E=0.

Clearly the question of discontinuities in the derivatives cannot be
decided on the basis of numerical simulations. We need an analytical argu-
ment (to be transformed hopefully into a proof ) to decide this question.
We present such an argument in the following subsection. But we first
show in Fig. 3 a graph of the current for higher value of the field to see if
other discontinuities of the derivative can be seen. We used the first method
described before Fig. 2 to compute the current from E=0.2 to E=2.0 at
steps of 2E=0.025. Each run consisted of 5 } 107 collisions and the error
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bars have been computed for values of E=0.25+0.25i by running 10
initial condition and interpolated for the other points (when they are not
visible it is because they are smaller than the points).

Based on Fig. 3 it seems consistent to assume that }(E ) is continuous
for E<2. Its derivative on the contrary continues to change in a very
irregular, possibly discontinuous, way. The first value of E at which a big
change is seen, is around E=0.35. To better appreciate this we plot the
conductivity for E=0.2 to E=0.5 in Fig. 4.

As can be easily seen the most probable site of discontinuous behavior
of the derivative are at fields in the intervals (0.225, 0.25), (0.325, 0.35) and
(0.375, 0.425). After discussing the possible origin of non smooth behavior
of the expectation of a smooth function with respect to ++

E we will return
to the behavior of j(E ) at those values of E.

We briefly report on a third method to compute the value of the con-
ductivity that we used to be sure that the above results are not due to a
bias in our Newton scheme. The idea is the same as the first method but

Fig. 3. Behavior of the current for higher value of the field. When no error-bar is visible it
means that it is smaller than the symbol used.
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Fig. 4. Current versus field for E # [0.2, 0.5]. The intervals (0.225, 0.25) and (0.325, 0.35)
possibly contain discountinuity of the first derivative.

instead of the fast Newton style algorithm we used a discrete time
integrator (a fourth order Runge�Kutta integrator). To avoid missing colli-
sions that are almost tangent we had to choose a very small time step, i.e.,
$t=10&4. The slowness of this algorithm permitted us to check only a few
points and they were consistent with the other methods.

We close this section observing that our simulations support the
validity of a central limit theorem for our system. In fact if one looks at the
behavior of the maximum and minimum values observed among the ten
runs as a function of the running time T one finds that one can fit it with
a function of the form C�- T with C2

t(J(X )2) E&(J(X )) 2
E .

2.2. Analytical Discussion

To study the properties of }(E ) as a function of E we can use
Eq. (2.1). We know that the correlation functions in Eq. (2.1) are uniformly

43Properties of Stationary Nonequilibrium States



integrable for E<E0 for some very small E0 , see [CELS]. This allows us
to exchange limits,

lim
E � E$ |

�

0
dt(J(X ) J(SE(t, X ))) 0

=|
�

0
dt(J(X ) lim

E � E$
J(SE (t, X ))) 0

=|
�

0
dt(J(X ) J(SE$(t, X ))) 0 (2.2)

and conclude that }(E ) is a continuous function of E for E<E0 . Although
the argument in [CELS] gives, as already stated, a very small value for E0

the numerical results, some of which are reported at the end of this subsec-
tion, support the validity of the above reasoning at least for E�1.

Differentiating Eq. (2.1) to obtain the higher derivatives of }(E ) as a
function of E is essentially equivalent to what is formally done in [R]. We
obtain

d}(E )
dE

=|
�

0
dt |

t

0
dt$(J(X ) F(SE (t$, X )) } {SE (t$, X ) J(SE (t&t$, SE (t$, X )))) 0

(2.3)

where F(X )=x̂&(x̂ } v) v is the derivative respect to E of the right hand
side of Eq. (1.1). This can be rewritten as:

d}(E )
dE

=|
�

0
dt |

t

0
dt$(J(X ) J(SE (t$, X )) J(SE (t, X )))) 0

+|
�

0
dt |

t

0
dt$({SE (t$, X ) J(X ) } F(SE (t$, X )) J(SE (t, X )))) 0 (2.4)

Observe that the second term on the right hand side can be rewritten as:

|
�

0
dt |

t

0
dt$({XJ(X ) 4&1(t$, X ) F(SE (t$, X )) J(SE (t, X )))) 0

=|
�

0
dt |

t

0
dt$(x̂4&1(t$, X ) x̂J(SE (t, X ))))0

+|
�

0
dt |

t

0
dt$(x̂4&1(t$, X ) } vJ(SE (t$, X )) J(SE (t, X ))) 0 (2.5)
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where 4(t, X ) is the tangent flow generated by S(t, X ), i.e., 4(t, X )=
�S(t, X )��X. Equation (2.4), together with analogous expressions for the
higher order derivatives can be obtained easily from the formalism
developed in [R]. Note that since the system has Lyapunov exponents
*u(E )>0 and *s(E )<0 (at least for not too large E ) one should expect
that x̂4&1(t$, X ) x̂&e&*s(E ) t. This makes the convergence of the integrals
in (2.5) very problematic. We will return to these equations later after we
consider this question from a different point of view.5

It is convenient at this point to introduce a discrete time version of our
dynamical system making precise what was already sketched in the intro-
duction. For every point X in phase space we can define {(X ) as the first
time at which the particle collides with one of the scatterers. Let now
SE (X )=SE ({(X )+, X ) where the + indicates that we choose the velocity
after the collision. It is clear that SE (X ) restricted to the set T of points
X=(q, v), such that q is on the surface of an obstacle and v is directed out-
ward of the obstacle, defines a dynamical system (the set T is usually
called a Poincare� section). We can parametrize the collision points P in T

by two angles and an integer, i.e., (:, ;, s) where s # [0, 1] is 0 if the point
is on the obstacle with radius 0.79 and 1 if it is on the obstacle of radius
0.39, : # [&?, ?] is the angle between the direction of the field and the
point on the scatterer at which the particle collides and ; # [&?�2, ?�2] is
the angle between the outgoing velocity and the normal direction to the
scatterer, see Fig. 1. We can also write T=T0 _ T1 where P # Ts iff
P=(:, ;, s). With a slight abuse of notation we will still indicate our
dynamical system in the new coordinates by SE (P) (note that for E=0 the
invariant measure on T is proportional to cos ; d;d:).

As already mentioned in the introduction the invariant measure ++
E

for SE (t, X ) will induce a measure &+
E for S(P) on T. The average of any

function G(X ) with respect to ++
E can be obtained from &+

E via:

(G(X ))E=
1

{+
E

|
T

G(P) d&+
E (P) (2.6)

where G(X )=�{(X )
0 G(SE (t, X )) dt and {+

E =�T {(P) d&+
E (P).
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2.3. Conjugating Maps and Grazing Trajectories

A very useful tool for the discussion of regularity properties of
dynamical system in terms of external parameters consists in the construc-
tion of a conjugating map, i.e., we look for a family of functions hE, E$ (P)
with the property that:

SE (hE, E$ (P))=hE, E$ (SE$ (P)) (2.7)

see [BKL] for an example of such a construction for an Anosov systems.
It is easy to see that for smooth dynamical systems (e.g., Anosov or axiom
A) such a family exists, at least in a small neighborhood of any given E,
and the average of a smooth function has the same regularity properties as
the conjugation [JL1, BKL]. In our case the existence of a smooth family
hE, E$ of conjugations would not be enough to prove that if G(P) is a
smooth function then (G) d

E=�T G(P) d&+
E (P) is a smooth function of E.

One would also have to show that the local unstable foliation as a function
of E has good smoothness properties.6 We will not touch on this second
point and focus our attention on the conjugation, hoping that an answer
to the problem of its existence will give us enough information on the
smoothness of }(E ). We will try to construct such a conjugation and show
that this is impossible at least in the usual strong sense. The analysis of the
problems that one encounters in this attempted construction will lead us to
identify the possible origin of the observed behavior of }(E ).

The main problem with our system is that the map SE (X ) is only
piecewise smooth.7 In fact SE (X ) is smooth except at points whose image
is tangent at collision,8 i.e., the discontinuity set E1

E of SE (P) is defined by
the set of P such that SE (P)=(:$, \?�2, s) for some :$. It is clear that we
can divide E1

E into two parts E1, s
E =E1

E & Ts corresponding to the two
obstacles. Moreover, due to the time reversibility of the dynamics, it is easy
to see that if (:, ;, s) # E1

E then (:, &;, s) is in the discontinuity set E&1
E of

S&1
E . The set E1, 1

0 is shown in Fig. 5.
This set is formed by a finite number of disjoint locally one dimen-

sional manifolds with possibly a finite number of bifurcations (see Fig. 5).
The bifurcation points are the points P where a multiple tangency happens,
i.e., where the ;-component of both SE (P) and S2

E (P) is in [&?�2, ?�2].
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of rigor of the forthcoming discussion it is not worthwhile to specify exactly what kind of
regularity we need. This ambiguity should not undermine the understandability of the
following reasoning.

8 The trajectories issuing from these points are usually called ``grazing trajectories.''
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Fig. 5. Discontinuity set E1, 1
0 for the map S0 on the obstacle of radius 0.39: the solid lines

represent points that collide with ;=?�2 while the dashed lines represent points that collide
with ;=&?�2. The : axis has to be thought of as periodic.

It is also easy to see that the boundary points of these manifolds are in
;=?�2 or ;=&?�2 and that every branch of E1

E can be represented by a
decreasing function :(;). Although Fig. 5 has been generated with the help
of the molecular dynamics program described in the previous section it
would not be difficult to write analytical expressions for the manifolds in
E1

E . We note that from Eq. (2.6) we get that (J(X )) E=(J(P)) d
E�{+

E

where J(P) is not a smooth function on T. This should not be a problem
considering that J, as any function G(P) obtained from a smooth function
G(X ) on phase space in the same way, is discontinuous exactly on E1

E and
smooth everywhere else.

It is also easy to observe that I1
E=E&1

E & E1
E is a discrete set with a

finite number IE of points Pi . We can assume that IE is a piecewise con-
stant function of E and one can write Pi=Pi (E ) for every Pi # I1

E with
Pi (E ) defined and smooth on every open interval on which IE is constant.
Moreover the points Pi (E ), together with the bifurcation points, divide the
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Fig. 6. Discontinuity set E1, 1
0 and E&1, 1

0 for the map SE (P) on the obstacle of radius 0.39.

manifolds to which they belong into connected segments and these
segments form the sides of polygons (generically squares and triangles at
this level) that form a partition of T. Again we can assume that, for E in
a small enough interval, these segments and polygons can be smoothly
parametrized. Figure 6 presents a snapshot of this situation for E=0.

It is clear that any conjugating map hE, E$ has to map E1
E to E1

E$ and
E&1

E$ to E&1
E$ . A possible first approximation of such an hE, E$ consists in

defining h (1)
E, E$ (Pi (E )) |I

1
E
=Pi(E $). It is clear that such a map can be

extended to a smooth map h (1)
E, E$ : T � T such that h (1)

E, E$ (P)=P+
(E$&E ) $h (1)

E, E$ (P) where $h (1)
E, E$ is some smooth function and h (1)

E, E$ (E_
E)=

E_
E$ for _=\1.

Although the map h (1)
E, E$ is surely not a conjugation we can consider it

as a starting point and reproduce the above construction using the sets of
discontinuities of S2

E (P) and of S&2
E (P), E2

E and E&2
E respectively, obtain-

ing a new map h (2)
E, E$ . Observe that E2

E=E1
E _ E� 2

E where P # E� 2
E iff the

;-component of S2
E (P) is in [&?�2, ?�2]. An example of the set E� 2

E _ E� &2
E

is given in Fig. 7.
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Fig. 7. Discontinuity set E2, 1
0 and E&2, 1

0 for the map EE (P) on the obstacle of radius 0.395.

It is well known that the sets EN
E will become dense as N � � so one

can hope that the above construction will create a sequence of functions
h(N )

E, E$ eventually converging to a real conjugation when N � �. Moreover,
considering that all the so constructed approximations are smooth one can
hope that also the limit will be smooth. There is nevertheless a major
problem that makes such a convergence impossible, at least in this first
naive meaning, as we will see in what follows.

Let us again consider our first approximation h (1)
E, E$ . It is easy to

realize that we can associate to each of the connected regions in which E1, s
E

divides Ts a pair of integer c=(nx , ny) indicating the difference in coor-
dinates between the center of the obstacle with which the particle collides
and the one from which it starts. From now on we will see the dynamics
as taking place on the universal covering of the torus and we will assume
that the origin coincides with the center of one of the scatterers of radius
0.79. We will denote the set of this pair of integers by D� 1, s

E and call it the
set of possible ``forward histories of length one'' for reasons that will
become clear in what follows. Observe that the map SE is continuous from
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one side at every point on E1
E . This allows us to define the set D1, s/D� 1, s

E

of the pair of integers associated with points in E1, s
E (these represent the

obstacles that can be grazed starting from a given obstacle). In Fig. 8 we
show, in the two upper pictures, the set D1, 1

E for E=0 and E=0.45. One
can realize that two new obstacles can be grazed at a field E=0.45 whereas
they were not at a field E=0. The two lower pictures show the correspond-
ing appearance of a new branch of E1

E and the fact that a new connected
component of T1"E1

E is created. The number on the figures are meant to
help associate corresponding regions. The real modification of the set D1, 1

E

takes place at some value of E # (0.375, 0.4) but we show the situation at
E=0.45 because it would otherwise be difficult to observe it due to the
small size of the region denoted by 5 in the lower right picture in Fig. 8.
It is interesting to note that this change takes place in one of the intervals
where we located a possible discontinuity of the derivative of }(E ). We
believe that this phenomenon is at the origin of those discontinuities and
we will argue in this sense in what follows.

Fig. 8. D1, 1
E for E=0 and E=0.45 with a detailed view of a part of the corresponding set

E1, 1
E showing the appearence of a new branch and a new connected component in T1"E1, 1

E

(numbers represent corresponding regions). Although the sizes are not to scale a larger point
stands for an obstacle of radius R2 .
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2.4. Origin of the Nonsmooth Behavior

Let us call Ed the exact value of E at which the new possible histories
appear. We can still construct our map h (1)

Ed&$E, Ed+$E for a very small $E,
mapping the regions numbered from 1 to 4 in Fig. 5 for E=Ed&$E into
the corresponding ones for E=Ed+$E. This would create the first
approximation h (1)

Ed&$E, Ed+$E to what we can call a ``partial conjugation''
hEd&$E, Ed+$E to be obtained as a limit of functions h (N )

Ed&$E, Ed+$E con-
structed by iterating the above scheme. Using this function to compute the
average of a smooth function on T as a function of E would give a smooth
result but we will commit an error due to the missed region corresponding
to the new possible history (region 5 in Fig. 5). It is easy to realize that this
region will have a size proportional to - $E and thus an area proportional
to $E. We can assume, as a first approximation, that the error committed
in neglecting such a region is proportional to this area which would give
a discontinuity in the first derivative.

We will now check if we can use this idea to account for the other
points of discontinuity we have indicated in the previous section. First of
all we observe that something very similar to what we discussed above
happens in the interval (0.325, 0.35) with the role of D1, 1

E played by D1, 0
E ,

as shown in Fig. 9.
Although it seems to agree quite well with the numerical observations

this picture is still very partial. In fact it can happen that the set I1
E=

E&1
E & E1

E changes structure although the sets E\1
E remain structurally iden-

tical. It is possible to see from Fig. 6 that almost all the points in I1
E are

near bifurcation points for E\1
E . Looking carefully at the picture (see

Fig. 9) one realizes that there are indeed 4 intersection points that delimit
a small square. We observe that, as we did before, we can associate with

Fig. 9. D0, 1
E for E=0 and E=0.35.
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every polygon in T bounded by E&1, s
E _ E1, s

E a sequence of length 2
(c&1 , c1) of pairs of integers ci=(nx, i , ny, i ) representing the center on
which the particle collides forward and backward in time. We can call the
set of all these pairs the possible ``symmetric history of length two'' and
denote it by M 1

E . If one follows the evolution of the above mentioned
square as a function of the field one realizes that at a field in (0.05, 0.075)
it disappears (see Fig. 9). We can again reason as before to deduce that this
phenomenon will give rise to a discontinuity of the first derivative. The
possible definition of the map h (1)

E, E$ in this situation appears more complex
and we will not discuss it here leaving this question and a formalization of
the above picture to a forthcoming study.

We observe here that the above considerations can be iterated. We can
consider the set DN, s

E formed by sequences of length N, (c1 ,..., cN) of pairs
of integers representing the possible consecutive collisions that a trajectory
experiences starting from the obstacle s (we can call it the set of possible
``forward histories of length N ''). With a reasoning analogous to the one
above we can expect a discontinuity of the first derivative when one of this
set changes. It is easy to see that, as N grows, the number of histories in
the set DN

E increases exponentially and, due to the instability of the
dynamics, new possible histories will appear or disappear very often. On
the other hand each of the regions in which T is divided by the bet EN

E is
exponentially small in N so we can expect them to create exponentially
small discontinuities of the first derivative. A similar argument holds for the
set IN

E and the set of symmetric histories of length 2N. This suggests that
one should be able to define a ``partial conjugation between E and E$ ''
mapping T"7E, E$ to T"7E$, E where 7E, E$ and 7E$, E are two sets with a
very complex structure, possibly fractal. Considering our comments after
Eq. (2.7) this would suggests that }(E ), as well as the average of any other
smooth function of X, is not a smooth function of E, e.g., it has a dense set

Fig. 10. Detail of E1, 1
E _ E&1, 1

E showing the change of I 1
E although E s, 1

E changes smoothly.
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of discontinuities. If one accepts the above picture on the structure of these
discontinuities one can still conjecture that the function }(E ) is Lipschitz
continuous in E, i.e., |}(E )&}(E$)|�C |E&E$|, for a suitable constant C.
This would imply that }(E ) is differentiable almost everywhere.

We note here that in the interval (0.25, 0.275) several of the above
phenomena take place (i.e., D2

E and D3
E change and a symmetric history of

length two disappears) so that a precise discussion of what happens is not
possible at this point.

2.5. Remarks

v The above picture may seem unnatural and without hope of
rigorous formalization and practical use. In this respect it is interesting to
note that one can consider the polygons that are rectangles in Fig. 6 as part
of a Markov (we use this notion in a much weaker sense than the usual
meaning a partition of T, in a possibly denumerable set of rectangles
whose boundaries are mapped covariantly one to the other for a finite
number of iterations). Indeed not all of them will have the necessary
property of covariance but it is possible to give a theoretically simple algo-
rithm to detect which can be considered as part of a Markov partition. The
part of phase space not covered by these squares should be analyzed using
the discontinuity set of S2

E . This will permit to obtain more squares and
to cover a bigger portion of phase space. Clearly this algorithm can be
iterated and, hopefully, will give rise to a complete Markov partition. In
this situation our partial conjugation map is obtained by simply matching
points with the same symbolic history. Although the above description
seems quite vague we think that the algorithm can be explicitly written and
implemented on a computer. We hope to come back to this point in a
forthcoming work.

v One is typically used to think of conjugation as mapping the
unstable manifold of one system into the unstable manifold of the other
and similarly for the stable. Our proposed map, in some sense really does
this. In fact the set EN

E will get more and more parallel to the unstable local
foliation of our system. An analogous comment holds for the Markov par-
tition.

v An idea of this situation can come also from (2.5). Indeed it is
reasonable to think that 4E (t, X ) will be given by a function that is
smooth everywhere except on the discontinuity generated by the collisions
that happen before time t. This implies that if X is part of a grazing trajectory
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for a given E0 we can expect 4E (t, X ) to be non smooth as a function
of E at E=E0 . Considering that the set of grazing trajectories varies
smoothly with E and that (2.5) contains an integral over the variable X we
do not expect any non-smoothness of the current to take place before the
set of grazing trajectories changes its structure. A dimensional analysis
gives the same result as for the conjugation but we do not report it here
because we do not believe that the integrals in (2.5) converge. We show
instead in Fig. 11 the behavior of dE (t)=log( |DE (t)| ) with DE (t)=
(J(X ) J(SE(t, X ))) 0 as a function of t and E. We see that all these func-
tions have a maxima for t near 3 and near 4. The value at the maximum
is a decreasing function of the field. In general the correlation function
appears to be decreasing in E at fixed X except for the appearence of a new
maximum around t=3.5. We think that this new maximum can be con-
nected with the appearence of a new symbol in D3

E and so with the discon-
tinuity in the derivative of }(E ) for small E. We leave this point as a
speculation because checking it is beyond the scope of this paper.

Fig. 11. Logarithm of correlation function with respect to the Lebesgue measure for fields
E=0 (solid line), E=0.025 (short dashed), E=0.05 (long dashed) and E=0.075 (dotted
dashed).
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3. CORRELATION FUNCTION AND DIFFUSION COEFFICIENT

In addition to DE (t) we studied the truncated current-current correla-
tion function in the steady state:

CE (t)=(J(X ) J(SE (t, X ))) E&(J(X )) 2
E

To compute this function we used a method similar to the one used for
computing the Kawasaki formula. After having generated an initial point
using the R250 generator we evolve it for 20 collisions with the field E=0
to better decorrelate the initial choice. We then switch on the field and let
the system evolve for 50 collisions in such a way that the final point can
be considered as distributed according to the stationary SRB distribution
++

E . We then use such a point to compute a trajectory segment of length
40 over which we compute the correlation. For small values of the field
the correlation function CE (t) appears very similar to the Kawasaki cor-
relation function. Considering that we already plotted C0(t)=D0(t) in
Fig. 13 we plot the logarithm CE (t)=log( |CE (t)| ) for E=0.025, 0.05, 0.075
and 0.1.

One of the most interesting question about such correlation functions
is whether it decays exponentially. In the case E=0 it has been proven in
[Y] and the proof can be extended for small (possibly very small) value of
the field [C]. We use here a method developed in [GG] to analyze this
question. In that paper the exponential decay rate was obtained by dividing
the set of maxima of the function c0(t) into two groups and fitting them by
a linear law. Due to the fact that our simulations are shorter than the one
used in [GG] (mainly for the reason that computing the collision time for
E{0 is much harder than for E=0 since the exact solution contains trans-
cendental functions) we see two maxima only for one of the two groups
used in [GG]: the maximum near t=2 and the one near t=4. While a fit
for E=0 gives us a value consistent with the one obtained by [GG]9 it is
evident that the slope of the fitting line becomes more negative (i.e., a faster
exponential decay) when the field is switched on. A numerical value can be
deduced from the fit reported in Fig. 12 but we do not plot them separately
because the error bar on each point would be too large.

As already noted before the structure of cE (t) changes as E changes.
Moreover it seems to us (although with our data we cannot really make a
definitive statement) that one would still be able to divide the maxima of
the correlation function into groups each of which well fitted by a linear
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Fig. 12. Estimation of the decay of the correlation function for E=0.025, 0.05, 0.075 and 0.1
using a linear fit for the maxima of cE (t).

law whose slope depends on E.10 This behavior can be explained if one
assumes that the correlation function is given by a sum of (quasi)-periodic
functions modulated by decaying exponentials. Such a behavior is well
established in the case of a diamond billiard by the numerical work in
[ACG]. The hypothesis formulated at the end of the previous section will
mean, in this setting, that the terms in the above sum are linked with the
symbolic dynamics of the system. We hope to come back to this problem
in a forthcoming work.

We computed the correlation function CE (t) also for values of the field
in the interval (0.275, 0.4). All the above discussion can be applied to this
case in the same way and we do not show any graphs because no new
information can be obtained from them. The integral of the correlation
function CE (t) gives us the xx-element of the diffusion matrix for the
system, i.e., d(E )=��

0 CE (t) dt. We conclude this paper reporting the value
of this quantity obtained from the above data.

As for the correlation function we have the data for E # (0.025, 0.1)
and E # (0.275, 0.375). In Fig. 13 the value of the diffusion coefficient is
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Fig. 13. d(E ) versus }(E ) showing good agreement near E=0 but clear non equality at
E{0.

plotted together with the value of }(E ) obtained from the Kawasaki for-
mula. It is clear that for small fields the two formulas give almost the same
value. Such an equality for E{0 would support the possibility of the
validity of a Green�Kubo relation out of equilibrium [GG, ES]. Our
results show that the Kawasaki formula and the Green�Kubo relation give
different results for E{0.

4. CONCLUSIONS

In this paper we presented results of numerical simulations as well as
analytical evidence for a non smooth behavior of the current as a function
of the field in a thermostatted single particle model of electrical conduction.
We mainly studied the invariant measure &+

E for the discrete time dynami-
cal system obtained by considering the collisions of the particle with the
obstacles as timing events. Our analysis is based on (at the present
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nonrigorous) construction of a conjugation map or rather a ``partial con-
jugation map'' between the dynamics at two different values of the field E.
This construction strongly relies on the expectation that it is possible to
analyze the dynamics using symbols directly connected to the discon-
tinuities of the collision map. The picture can probably be substantiated by
constructing an explicit Markov partition for the dynamical system.

Our analysis implies that the average with respect to &+
E of any

smooth function on T or, more generally, the average of every smooth
function on phase space with respect to ++

E is a not twice differentiable
with respect to the electric field E. Moreover one can conjecture that the
first derivative exists in a weak sense but is everywhere discontinuous. Such
a behavior has already been observed in [KD] for a very simple model.

While our analysis is not rigorous it has the advantage of being, at
least in principle, constructive. The scheme for the construction of a ``par-
tial conjugation'' or better of a Markov partition can lead to a rigorous
proof of our assertions together with the possibility of conducting com-
puter assisted experiments on billiards.

As noted earlier the recent formalism developed by Ruelle in [R]
suggests the presence of the same kind of non smoothness but we do not
see a possibility of using it in a convincing way to argue in one direction
or the other. It seems to us that a form of conjugation would be in any case
necessary to show the convergence of Eq. (2.3).

We also analyzed the behavior of the velocity�velocity correlation
function and of the diffusion coefficient. Applying the methods developed in
[GG] we argue that the correlation functions decay exponentially also
when the field is non zero. Moreover the rate of decay appears to increase
with the field, at least for small values of E. The detailed structure of the
correlation function undergoes interesting changes and we try to correlate
these changes with the property of the invariant measure discussed above.
Due to the numerical difficulties of computing correlation functions our
discussion remains speculative.

Finally we computed the diffusion coefficient. For E=0 the diffusion
coefficient gives the linear conductivity. It has been argued that this rela-
tion could be valid also for a field different from 0, see [ES]. This would
imply that the integral of the correlation function computed with respect to
the Lebesgue measure, dE (t), and with respect to the SRB measure ++

E ,
should be equal. Our results show that this is not the case so that no direct
extention of a Green�Kubo formula to non-equilibrium is possible (see
[G] for an interesting proposal of what exending Green�Kubo out of equi-
librium means). Results similar to ours were already present in [ES]. Con-
sidering that no good reason has ever been given for the above equality to
hold we consider this result as natural.
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