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Abstract: Under suitable conditions a flow on a torusC (p)-close, withp large enough,
to a quasi periodic diophantine rotation is shown to be “linearizable”,i.e.conjugable to
the quasi periodic rotation, by a map that is analytic in the perturbation size. This result
is parallel to Moser’s theorem stating conjugability in classC (p′) for somep′ < p. The
extra conditions restrict the class of perturbations that are allowed.

1. Introduction

1.1. The perturbation of the Hamiltonian of a system of` harmonic oscillators with
frequencies1

2π (ω01, . . . , ω0`) is described by the Hamiltonian

H0(A,α) = ω0 · A + εA · f (α) + εA · F (A,α) A , (1.1)

where (A,α) ∈ R` × T` are the “action–angle” variables of the oscillators,· denotes
the scalar product,f is a vector andF a matrix that describe the perturbation structure
andε is the “intensity” of the perturbation.

The Hamiltonian system (1.1) is not integrable in general (see for instance (4.10)
in [G3]). Nevertheless, if theunperturbed rotation vectorω0 of the oscillators verifies
a “diophantine condition” and if the perturbation is analytic, it is possible to add to
the Hamiltonian a suitable “counterterm” A · N ε(A), divisible and analytic in the
perturbative parameterε and dependingonly on the action variablesA, so that the
modified HamiltonianH0 +A ·N ε(A) is integrable.

This was conjectured in [G1] and proven first in [E2], then also in [GM2] (with
techniques of [G4,GM1]), by exhibiting the details of the cancellation mechanisms
operating, order by order, in the perturbative series for the counterterm and for the
equations of motion solution for the modified Hamiltonian; a third method is in [EV].

Note that integrability of the problem (1.1) withF = 0 is equivalent to the problem
of “linearizability” of the flow on the torus generated by the differential equations
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dα

dt
= ω0 + εf (α) , (1.2)

i.e. the problem of finding a change of coordinates,α = ψ + hε(ψ), on the torusT` =
[0, 2π]` such that Eqs. (1.2) become the trivial quasi periodic linear flowdψ/dt = ω0.
The equations forh,H are derived below (see (1.6), (1.7) and (1.8)).

A previous partial result about the existence of the countertermNε(A) is in
[DS,R,PF], where the one-dimensional Schrödinger equation with a quasi periodic po-
tential is studied: the latter problem can be shown to be equivalent to the problem of
the existence of a counterterm which makes integrable the Hamiltonian of a system of
interacting oscillators, providedF = 0 andf has a very special form, (see [G2] and
Sect. 5 below): restricted to this case, the proof of existence of a counterterm making
integrable the Hamiltonian follows also from the analysis of [M1] (see Appendix A4
below).

But the “beginning” of the interest in the above questions goes back to a problem
similar to (1.2) investigated by Moser in [M1]. In the latter paper more general nonlinear
ordinary differential equations are perturbatively studied under the hypothesis that the
“characteristic vector” (defining the linear part of the equations) verify ageneralized
diophantine condition(see Appendix A4 for details): under the assumption that the
nonlinear partf is analytic it is proved that one can add to the equations counterterms
depending (analytically)only on the perturbative parameterε and so that the modified
equations admit a solution analytic inε for ε small.

The conjecture in [G1] envisages the possibility of introducing a counterterm de-
pending (analytically)also on the actions in the Hamiltonian in such a way that the
equations of motion admit an analytic solution: the two problems (the one studied by
Moser and the one studied in [G2]) deal in general with different equations. Neverthe-
less, if the perturbation is linear in the action variables in (1.1),i.e.F = 0, then the
countertermNε(A) turns out to beA–independent and analytic inε if f is analytic on
T`: in that case the constant value ofNε(A) will be denotedNε or N(ε) and, as pointed
out above, the existence and analyticity ofNε is then implied by Moser’s theorem [M1],
Theorem 1. In [M1] it is also pointed out that the latter result is the “core” of the proof
of the KAM theorem in the analytic case.

However Moser’s theorem gives no analyticity result when the perturbation is non-
analytic. So, in this paper we consider (1.1) withF = 0 or, equivalently, (1.2) andεf
modified intoεf +Nε, with the aim of proving existenceand analyticityof the counterterm
Nε if the perturbationf belongs to a special class, specified below (see Sect. 1.3), of
functions dependingnon-analyticallyon the angles. Convergence of the perturbative
series for the equations of motion solution and for the counterterm is obtained by taking
into account cancellations which include, besides the ones necessary to treat the analytic
case as in [E2] (the “infrared cancellations”), also new cancellations called “ultraviolet
cancellations” (see [BGGM]).

The analyticity (of the equations of motion solution and of the counterterm) in the
perturbative parameterε even though the interactionf (α) is non-analytic inα is a result
that we believe would be difficult to obtain by other techniques which one could use to
face this problem, like the Moser-Nash smoothing technique [M2].

The tools are inherited from [BGGM], where interaction potentials belonging to
the same class of functions are considered and analyticity of the KAM invariant tori as
functions of the perturbative parameter is proved (near zero).

1.2. The paper is organized as follows. In the remaining part of this section we in-
troduce the notations and state the result (Theorem 1.4). In Sect. 2 we reintroduce our
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diagrammatic formalism, referring for details to Appendix A1 and simply outlining the
differences with respect to [BGGM], Sect. 3. In Sect. 3 the so-calledinfrared cancel-
lations, [E1], are discussed following [GM2]: such cancellations allow us to solve the
so-called “small divisors problem”, and they are sufficient to prove convergence of the
perturbative series in the analytic case. Since there are some differences with respect
to [GM2], mostly the use of Siegel-Eliasson’s lemma (see Lemma 3.4 below) instead
of Siegel-Bryuno’s lemma ([GM2], Lemma 5.3), we provide a selfconsistent discus-
sion although the problem is the same as the one treated in [GM2], Sect. 8. In Sect. 4,
we study the “ultraviolet cancellations” which, together with the infrared ones, make
convergent the perturbative series for the class of interactions introduced in Sect. 1.3.
In Sect. 5, we note briefly that Theorem 1.4 for non-analytic interactions does not give
really more results than the corresponding theorem for the analytic case (see [E2], and
[GM2], Theorem 1.4), if applied to the one-dimensional Schrödinger equation with a
non-analytic quasi periodic potential; this is a little deceiving, but not quite unexpected
(see comments in Sect. 5). As a byproduct of the proof, analyticity of eigenvalues and
eigenfunctions in the perturbative parameter is proved under the assumption that the
interaction potential is at least in the classC (p), p > 3τ + `: this result improves some
aspects of [Pa], see also [PF] and Sect. 5.

Note that compared to [BGGM] the infared cancellations discussion appears re-
markably less involved (and therefore more suitable for a first approach to the tech-
niques employed). On the contrary the ultraviolet cancellations analysis is essentially
unchanged compared to the one in [BGGM], notwithstanding the simplified expression
of the Hamiltonian (1.3) below: it is repeated for selfconsistence purposes and because
pointing out the (slight but many) variations would take the same amount of work.

1.3. The Hamiltonian is
H = H0 + A · N(ε) (1.3)

with H0 = ω0 · A + εA · f (α) given by (1.1)with F = 0, where
(1) A ∈ R` andα ∈ T` are canonically conjugated variables (respectively action and
angle variables), and· denotes the scalar product;
(2) ω0 is a rotation vector satisfying the “diophantine condition”

C0|ω0 · ν| > |ν|−τ ∀ν ∈ Z` ,ν 6= 0 , (1.4)

for some positive constantsC0 andτ (here and henceforth|ν| =
√
ν · ν, while ‖ν‖ =∑`

j=1 |νj |, if ν = (ν1, . . . , ν`));

(3) f has the formf = (f1, . . . , f`), with eachfj of the classĈ (p)(T`) introduced in
[BGGM], for somep: namelyfj(α) =

∑
ν∈Z fjν e

iν·α, fν = f−ν , with fj0 = 0 and, for
ν 6= 0,

fjν =
N∑

n≥p+`

c(j)
n + d(j)

n (−1)||ν||

|ν|n , (1.5)

for someN ≥ p + ` and some constantsc(j)
n , d(j)

n ; and
(4)N(ε), called a “counterterm”, has to be fixed in order to make the equations of motion
for the model (1.3) linearizable.

For instance we can choosefjν = aj |ν|−b, with b = p+` anda = (a1, . . . , a`) ∈ R`.
In the following we shall deal explicitly with such a function: the proof can be trivially
extended to the class of functions (1.5).
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Theorem 1.4. Given the Hamiltonian (1.1), withω0 satisfying the diophantine condition
(1.4),F ≡ 0 and f = (f1, . . . , f`), with eachfj ∈ Ĉ (p)(T`), there exist two positive
constantsε0 and p0 = 2 + 3τ , and a functionN(ε) analytic in ε for |ε| < ε0, such
that the equations of motion corresponding to the Hamiltonian (1.3) admit linearizable
(i.e.conjugable to the linear flow defined bẏψ = ω) solutions inC (0)(T`) analytic inε
for |ε| < ε0, providedp > p0, i.e. solutions described by (1.7), (1.8) below.

1.5. The equations of motion for the Hamiltonian (1.3) are given by

dαj

dt
= ω0j + εfj(α) +Nj(ε) ,

dAj

dt
= −εA · ∂αj

f (α) .
(1.6)

We look for motions of the form

α(t) = ω0t + h(ω0t) , h(ψ) =
∞∑
k=1

∑
ν∈Z

h(k)
ν eiν·ψ εk ,

A(t) = A0 + H(ω0t) , H(ψ) =
∞∑
k=1

∑
ν∈Z

H(k)
ν eiν·ψ εk ,

(1.7)

with h oddandH evenin ψ so that the equations forh andH become

(ω0 · ∂ψ)hj(ψ) = εfj(ψ + h(ψ)) +Nj(ε) ,

(ω0 · ∂ψ)Hj(ψ) = −ε[A0 + H(ψ)] · ∂αj
f (ψ + h(ψ)) ,

(1.8)

where∂α denotes derivative with respect to the argument, andN(ε) has to be so chosen
that the right-hand side of the first equation in (1.8) has vanishing average (see Sect. 2.1
below). A “solution” to (1.8) can be given a meaning as soon ash,H are continuous
by requiring equality of the Fourier transforms of both sides (regarded as distributions,
see [BGGM]).

We see from (1.8) that the equation forh is closed, so that, as long as we are interested
only in the functionh, i.e. in the analytic linearizability of (1.6), we can confine ourselves
to studying only the first equation in (1.8). This is the equation that one has to solve to
linearize the flow generated bydα/dt = ω0 + εf (α) + N(ε): hence it is not surprising
that the equation forH can be easily solved onceh is known: see Sect. 2.3 below.

Note that sincef is supposed even, then we expect thath is odd andH is even: hence
while the equation forH does not seem to hit any obvious compatibility problems we
see that the equation forh does,unlessN(ε) is suitably chosen. In fact the function
εf (ψ + h(ψ)), being even has noa priori reason to have a vanishing integral overψ (as
it should, being equal to (ω0 · ∂ψ)h(ψ)).

2. Formal Solution and Graph Representation

2.1. We study now Eqs. (1.8) withfjν = aj |ν|−b replaced withfjν e
−κ|ν|. The pa-

rameterκ is takenκ > 0, and, after computing the coefficientsh(k)
ν in (1.7), which will

depend onκ, one will perform the limitκ → 0 (“Abel’s summation”).
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The formal solubility of (1.8) withfjν replaced withfjν e
−κ|ν| follows from [E2],

where more general interaction potentials are considered (see also [GM2], Sect. 8.1,
where the formalism is similar to the one used here).

One hash(k)
j0 = H (k)

j0 = 0 ∀k ≥ 1, while, whenν 6= 0, for k = 1,

h(1)
jν =

fjν

iω0 · ν , H (1)
jν = − iνj

iω0 · ν
(
A0 · fν

)
, (2.1)

and, fork ≥ 2,

h(k)
jν =

1
iω0 · ν

∑
p>0

1
p!

∑
ν0+ν1+...+νp=ν

fjν0

∑
k1+...+kp=k−1

p∏
s=1

(
iν0 · h(ks)

νs

)
,

H (k)
jν = − 1

iω0 · ν
∑
p>0

1
p!

∑
ν̃+ν0+ν1+...+νp=ν

(iν0j) ·

·
∑

k̃+k1+...+kp=k−1

(
H(k̃)
ν̃ · fν0

) p∏
s=1

(
iν0 · h(ks)

νs

)
− 1
iω0 · ν

∑
p>0

1
p!

∑
ν0+ν1+...+νp=ν

(iν0j) · (2.2)

·
∑

k1+...+kp=k−1

(
A0 · fν0

) p∏
s=1

(
iν0 · h(ks)

νs

)
,

providedNj(ε) =
∑∞

k=1N
(k)
j εk, withN (k)

j defined byN (1)
j = −fj0 and, fork ≥ 2,

N (k)
j = −

∑
p>0

1
p!

∑
ν0+ν1+...+νp=0

fjν0

∑
k1+...+kp=k−1

p∏
s=1

(
iν0 · h(ks)

νs

)
. (2.3)

Equality (2.3) assures the formal solubility of (1.8). The functionf is even, henceh
is odd andH is even.

If f is analytic (κ > 0) the convergence of the series defining the functionsh and
H is a corollary of [E1,E2] (see also [GM2], Theorem 1.4), but the convergence radius
is not uniform inκ (it shrinks to zero whenκ → 0). The aim of the present paper is
to show that, iff belongs to the class of functionŝC (p)(T`), then there are cancellation
mechanisms that imply convergence of the series and, therefore, analyticity inε of the
equations of motion solution.

2.2. We shall use a representation of (2.2) in terms of “Feynman graphs” following the
rules in [BGGM], Sect. 3: the reader not familiar with [BGGM] can find in Appendix A1
below a brief but selfconsistent description of the graphs. See [GGM] for the terminology
motivation. The only difference will be that that the “value” of a graphϑ is now given
by

Val(ϑ) =
∏
v<r

(iνv′ · fνv )
iω0 · νλv

, (2.4)

where
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(1) v′ is the node immediately followingv in ϑ, andλv = v′v is the line (or branch)
emerging fromv and enteringv′;

(2) r is the “root” of the graph, andiνr denotes the unit vector in thejth direction,
iνr = ej , j = 1, . . . , `;

(3) νv is the “external momentum” associated with the “node” v, νλv
=

∑
w≤v νw is

the “momentum” flowing through the lineλv, andν(ϑ) is the momentum flowing
through the line entering the root (“root branch”). The momentumνλ mustbe 6= 0
for all linesλ ∈ ϑ: this has to be regarded as a restriction on the possible values of
the node momenta{νv} that we allow attributing to the nodes.

It can be convenient to introduce the notations

gλ ≡ 1
ω0 · νλ

, D(ϑ) =
∏
λ∈ϑ

gλ , (2.5)

so that (2.4) becomes
Val(ϑ) = D(ϑ)

∏
v<r

(
νv′ · fνv

)
; (2.6)

andgλ will be called the “propagator” of the lineλ. Let us denote byT (k,ν) the set of
non-equivalent labeled graphs of orderk with ν(ϑ) = ν andiνr = ej ; then

h(k)
jν =

1
k!

∑
ϑ∈T (k,ν)

Val(ϑ) =
1
k!

∑
ϑ0∈T 0(k)

W (ϑ0,ν) , (2.7)

whereϑ = (ϑ0, {νv}), if ϑ is a labeled graph, whileϑ0 is a graph bearing no external
momentum labels,T 0(k) is the set of such graphs of orderk, and

W (ϑ0,ν) ≡
∑

{νv}: ν(ϑ)=ν

Val(ϑ) . (2.8)

By comparing the expression ofh(k)
jν in (2.2) with (2.3), one realizes thatN (k)

j admits the

same description ash(k)
jν in terms of graph values, with the only difference thatν(ϑ) = 0

and no propagator is associated to the root branch. Then the bound we shall find forh(k)
jν

will hold also forN (k)
j (this will appear from the analysis of Sect. 3 and Sect. 4).

2.3. The functionH (k)
jν can be expressed in terms of the same graphs as in Sect. 2.2, but

the value associated with a graphϑ is no longer given by (2.6). One defines, instead,

Val∗(ϑ) =D(ϑ) (−iνv1j)
∑
ṽ∈ϑ

[ ∏
v/∈C(v1,ṽ)

(νv′ · fνv )
]
·

·
[ ∏
v∈C(v1,ṽ)\ṽ

(−fνv
· νv′′ )

]
(fνṽ · A0) ,

(2.9)

where

(1) v1 is the highest node inϑ, i.e.v′
1 = r,

(2) C(v1, ṽ) is the collection of vertices crossed by the connected path of branches inϑ
linking the nodev1 with a node ˜v ≤ v1, with C(v1, v1) = v1,

(3) v′′ is the node onC(v1, ṽ) immediately precedingv.



Quasi Linear Flows on Tori 713

With the above definition (2.8), one has

H (k)
jν =

1
k!

∑
ϑ∈T (k,ν)

Val∗(ϑ) , (2.10)

whereT (k,ν) is defined as after (2.6).

3. Infrared Cancellations

The cancellations discussed in this section are sufficient to treat the analytic case (see
[E2,GM2]). Hence they are not really characteristic of the problems that we address in
this paper. Nevertheless they must be taken into account and their compatibility with the
cancellations that are typical of the differentiable problem will have to be, eventually,
discussed.

3.1. Let us defineχ(x) as the characteristic function of the set{x ∈ R : |x| ∈ [1/2, 1)},
andχ1(x) as the characteristic function of the set{x ∈ R, |x| > 1}. Then each propagator
in (2.6) can be decomposed as

gλ =
χ1(ω0 · νλ)
ω0 · νλ

+
0∑

n=−∞

χ(2−nω0 · νλ)
ω0 · νλ

=
1∑

n=−∞
g(n)

λ , (3.1)

and, inserting the above decompositions in the definition of the value of a graph (2.3), we
see that the value of each graph is naturally decomposed into various addends. We can
identify the addends simply by attaching to each lineλ an “infrared scale” (or simply
“scale”) labelnλ ≤ 1, thus obtaining a new “more decorated” graph that we still callϑ.

It has to be noted that, given a graphϑ, there is only one set of scales{nλ} for which
all the propagatorsg(nλ)

λ are not identically zero: nevertheless if one uses (3.1) the scale
labels{nλ} and the momentum labels{νv} are considered asindependent labels, which
is useful for combinatorial purposes.

Definition 3.2 (Cluster). Given a graphϑ, a “ cluster” of scalen ≤ 1 is a maximal set
of nodes connected by lines of scale≥ n with at least one line of scale exactlyn. A line
λ which connects nodes both located inside a clusterT is said to be “internal ” to the
cluster, and we writeλ ∈ T ; the lines which connect a node inside with a node outside
the cluster are called “external” to the cluster; if a lineλ is internal or external to a
clusterT , we say thatλ intersectsT , and we writeλ ∩ T 6= ∅. A line is “outside” the
clusterT if it is neither internal nor external.

The nodes of a clusterV of scalenV may be linked to other nodes by lines of lower
scale. Such lines are called “incoming” if they point at a node in the cluster oroutgoing
otherwise; there may be several incoming lines (or zero) but at most one outgoing line,
because of the tree structure of the graphs.

Definition 3.3 (Resonance).We call “resonance” a cluster V such that:
(1) there is only one incoming lineλV and one outgoing lineλ′

V and|νλV
| = |νλ′

V
|;

(2) if nV is the scale of the cluster andnλV
is the scale of the lineλV , one hasnV ≥

nλV
+ 3.

If νλV
= νλ′

V
, the resonance is called a “real resonance”; if νλV

= −νλ′
V

, it is called
a “ virtual resonance”.
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Note thatV can be a resonance only ifnλV
≤ −2. Then the following result holds

(see [S,E,BGGM]).

Lemma 3.4 (Siegel-Eliasson’s bound).If we consider only graphs with no real reso-
nances then ∏

λ∈ϑ

1
|ω0 · νλ| ≤ Ck

∏
v∈ϑ |νv| η

2 τ

(
∑

v∈ϑ |νv|)τ , (3.2)

for some positive constantC andη = 6.

3.5. Consider a graphϑ and callϑ̂ the graph obtained by deleting the infrared scale
labels{nλ} andϑ0 the graph obtained by deleting the scale and external momentum
labels: we shall writeϑ = (ϑ̂, {nλ}), or (ϑ0, {nλ}, {νv}).

Suppose that the set of scales{nλ} for ϑ0 is consistent with the existence of a fixed
family V 1 of maximal (real) resonances, i.e.of real resonances not contained in any
larger real resonance.1 If V ∈ V 1 we callλV = vb

V v
1
V the line incoming into the real

resonance andnλV
its scale; likewiseλ′

V = v0
V v

a
V is the outgoing line, (va

V , v
b
V ∈ V

while v0
V , v

1
V are out of it).

We consider the graph values at a fixed set of scales for the lines not in anyV ∈ V 1
and arbitrary values assigned to the scales of the lines inside the resonancesV ∈ V 1, and
we say, in general, that a set of scales is “compatible” with V 1, denoting this property
by {nλ}&V 1.2

We introduce themomentum flowing onλv ∈ V intrinsic to the clusterV asν0
λv

=∑
v≥w∈V νw, and define the “resonance path” QV as the totally ordered path of lines

joining the line coming into the real resonanceV with the outgoing line andnotincluding
the latter two lines. Then∑
{nλ}

Val(ϑ̂, {nλ}) =
∑
V 1

∑
{nλ}&V 1

[ ∏
λ∩V 1=∅

λ=xy

(νx · fνy )
χ(2−nλω0 · νλ)

ω0 · νλ

]
· (3.3)

·
∏

V ∈V 1

{[
(νv0

V
· fνva

V

) (νvb
V

· fν
v1

V

)
χ(2−nλV ω0 · νλV

)
(ω0 · νλV

)2

]
V(ω0 · νλV

|V, {nλ}λ∈V )
}
,

where the sums are performed at fixedϑ0, fixed{νv} and fixed values of thenλ if λ is
not in anyV ∈ V 1 and with the scale labelsnλ compatible with the cluster structure
given by the resonancesV ∈ V 1; therefore they run over many terms, as the labels take
all possible values: all vanishing but one, becauseϑ̂ is a graph with given node momenta
and therefore with only one possible set{nλ} of lines scales for which the addend does
not vanish; the “resonance value” V is defined by

V(ζ|V, {nλ}λ∈V ) =
∏
λ∈V
λ=xy

(νx · fνy
)
χ(2−nλ (ω0 · ν0

λ + σλζ))

ω0 · ν0
λ + σλζ

, (3.4)

with σλ = 1 if λ is on the resonance pathQV , (λ ∈ QV ), otherwiseσλ = 0.

1 This means that theV ∈ V 1 are clusters corresponding to the labeling{nλ} of the branches ofϑ0,
furthermore they have one entering line and one exiting line and such lines have the same scale.

2 This means that there is at least one graph (ϑ0, {nλ}, {νv}) such that among its clusters there are the
resonancesV ∈ V 1 not contained in any other resonances and eachV ∈ V 1 is a real resonance.
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Let χ(n,n′)(x) ≡
∑n′

j=n χ(2−jx) be the characteristic function of the set|x| ∈
[2n−1, 2n′

). We shall use the notation{nλ}λ/∈V 1
to denote the collection of the{nλ}

corresponding to the linesλ not internal to any resonanceV ∈ V 1. Then (3.3) implies∑
{nλ}

Val(ϑ̂, {nλ}) =
∑
V 1

∑
{nλ}λ/∈V 1

&V 1

X1(ϑ̂, {nλ}λ/∈V 1
) ,

where

X1(ϑ̂,{nλ}λ/∈V 1
) =

[ ∏
λ∩V 1=∅

λ=xy

(νx · fνy
)
χ(2−nλω0 · νλ)

ω0 · νλ

]
· (3.5)

·
∏

V ∈V 1

{[
(νv0

V
· fνva

V

) (νvb
V

· fν
v1

V

)
χ(2−nλV ω0 · νλV

)
(ω0 · νλV

)2

]
V ′(ω · νλV

|V )
}
,

with

V ′(ζ|V ) =
∏
λ∈V
λ=xy

(νx · fνy
)
χ(nλV

+3,+∞)(ω0 · ν0
λ + σλζ)

ω0 · ν0
λ + σλζ

, (3.6)

which can be rewritten, by using the interpolation formula

V ′(ζ|V ) = V ′(0|V ) + V ′
1(ζ|V ) ,

where

V ′
1(ζ|V ) =

( ∏
λ∈V/QV

λ=xy

(νx · fνy )
χ(nλV

+3,+∞)(ω0 · ν0
λ)

ω0 · ν0
λ

)
·

· ζ
∫ 1

0
dtV

∂

∂tV

[ ∏
λ∈QV
λ=xy

(νx · fνy )
χ(nλV

+3,+∞)(ω0 · ν0
λ + tV ζ)

ω0 · ν0
λ + tV ζ

]
.

(3.7)

A key remark, [E1,G4], will be thatfor the purpose of computing the sums over all
scale and momentum labels, i.e. for our purposes, we can consider the valueX1 with the
real resonance value (3.6) corresponding toV ∈ V 1 always replaced by the expression
defined in (3.7); this follows from the following “cancellation”:

Lemma 3.6. Fixedϑ0 andV 1, when all graph values in (3.3), with the real resonance
valueV ′(ζ|V ) replaced withV ′(0|V ), are summed together over{νv} and{nλ} with
{nλ} &V 1, they give a vanishing contribution.

The proof is in Appendix A2.

3.7. We can perform explicitly the derivative in (3.7): we obtain (see also the Remark
after (5.6) in [BGGM]), neglecting the terms withζ = 0,

X1(ϑ̂, {nλ}λ/∈V 1
) =

( ∏
λ∈ϑ̂
λ=xy

νx · fνy

)
·
( ∏

λ∈ϑ̂/V 1

χ(2−nλω0 · νλ)
ω0 · νλ

)
·

·
∑

λ0
V

∈QV

1∑
z=0

∫ 1

0
dtV p(λ

0
V , z, tV ) ·

∏
V ∈V 1

[ ∏
λ∈V

χ(nλV
+3,+∞)(ω0 · νλ(tV ))
ω0 · νλ(tV )

]
,

(3.8)
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where, forλ ∈ V , we adopt the notationνλ(tV ) = ν0
λ + tV νλV

, and

p(λ0
V , z, tV ) =

{
− ω0·νλV

ω0·νλ0
V

(tV ) , if z = 1 ,∑
t∗
V
δ(tV − t∗V ) , if z = 0 ,

(3.9)

wheret∗V are the solutions to the equation|ω0 · νλ0
V

(tV )| = 2nλV
+2, if any (there are

at most 2 solutions). The two values ofz correspond to the two terms obtained by
differentiating the denominator of the term in square brackets in (3.8), (z = 1), or the
numerator, (z = 0).

We then redecompose in (3.8) the characteristic functions of the lines inside the real
resonances into individual scales fromnλV

+ 3 up, so that (3.5) withV ′ replaced byV ′
1,

see (3.7), and withX1 replaced by

X̃1(ϑ̂, {nλ}) =
∫ 1

0

( ∏
V ∈V 1

dtV
)

·
∏

λ∈ϑ̂, λ=xy

λ/∈{λ′
V

}V ∈V 1

(χ(2−nλω0 · νλ(t))
ω0 · νλ(t)

)
·

·
( ∏

λ∈ϑ̂, λ=xy

νx · fνy

)
·
( ∏

V ∈V 1

∑
λ0

V
∈QV

1∑
zV =0

dzV

λ0
V

ω0 · νλ0
V

(t)

)
,

(3.10)

with t = {tV }V ∈V 1 and we setνλ(t) = ν0
λ + tV νλV

if λ ∈ QV , andνλ(t) = ν0
λ ≡ νλ

if λ /∈ ∪V ∈V 1QV , and

d1
λ0

V
= −1 , d0

λ0
V

=
ω0·νλ0

V
(t)

ω0·νλV

∑
t∗
V
δ(tV − t∗V ) , (3.11)

wheret∗V is defined as in (3.9).
Each addend in (3.10), with fixedϑ = (ϑ̂, {nλ}) and{λ0

V , zV , tV }V ∈V 1, is said to
be “superficially renormalized” on the real resonancesV 1, on the lineλ0

V and on the
choiceszV .

Remark 3.8.Note that the casezV = 0 is special as it forcesnλ0
V

= nλV
+ 3, so that the

ratio in the definition (3.11) ofd0
λ0

V

is bounded above by 24.

3.9. Having dealt with the maximal real resonances (“first generation” real resonances)
we perform again the same operations,i.e.fixed ϑ̂, V 1, {λ0

V , zV , tV }V ∈V 1 and the
scales{nλ} forλ 6∈ ∪V ∈V 1V , we identify the “second generation” real resonances as the
maximal real resonances inside eachV ∈ V 1; callV 2 the set of the real resonances of the
first andsecond generations and proceed in a similar way to “renormalize" superficially
the newly considered real resonancesW ∈ V 2/V 1.

This means that we fix the scale labels of the lines outside the second generation real
resonances, and sum over the other scale labels{nλ}, λ ∈ V 2 \V 1, consistent with the
cluster structure ofV 2.

We obtain that the product in (3.10) of the terms coming from the linesλ ∈ W ∈ V 2,
W ⊂ V ∈ V 1, can be written in a form very close to (3.6), with the difference that
the momenta flowing through the linesλ ∈ QW ∩ QV areνλ(t) = ν0

λ + tW (ν0
λW

+
tV νλV

), andnλV
+ 3 is replaced bynλW

+ 3 in the characteristic functions.
We proceed to perform a Taylor expansion as above, in the variablesζW = ω0 ·

(ν0
λW

+ tV νλV
) if λW ∈ QV or ζW = ω0 · ν0

λW
otherwise. However this time we
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modify the renormalization procedure: ifW contains the lineλ0
V we do nothing, while

if λ0
V /∈ W we write the first order remainder as above.
We then perform the derivatives with respect to the new interpolation parameters

tW , generated by the expression of the Taylor series remainders, hence redevelop the
characteristic functions and rearrange, along the lines that generated (3.10), the various
terms and get an expression very similar to (3.10), for a quantity that we could call
X2(ϑ̂, {nλ}λ/∈V 2\V 1

), such that∑
{nλ}

Val(ϑ̂, {nλ}) =
∑
V 2

∑
{nλ}λ/∈V 2\V 1

&V 2

X2(ϑ̂, {nλ}λ/∈V 2\V 1
) .

Note that the order zero term of each Taylor expansion can be neglected, because of
Lemma 3.6, which still holds ifV is not a maximal resonance. In the same way as theX1
was already used to start the second renormalizations, the latterX2 can be subsequently
used, for the superficial renormalization of the third generation of real resonances. Then
we iterate step by step the procedure until there are no more real resonances inside the
maximal real resonances found at the last step performed and all thenλ have been fixed.3

To write down the final expression we need some notations.
(1) Let us callV the collection of all real resonances selected along the iterative pro-
cedure. For eachV ∈ V choose a lineλ0

V , on the resonance path ofV , with the
“compatibility condition” that if V ⊂ Z ∈ V , λ0

Z ∈ V impliesλ0
V = λ0

Z .
(2) Then ifλ0

Z ∈ V (so thatλ0
Z = λ0

V ) we say thatλ0
V andV are “old”, and define

πV (dtV ) = δ(tV − 1)dtV , d1
λ0

V
= 1 , d0

λ0
V

= 0 . (3.12)

(3) If λ0
Z /∈ V we say that the lineλ0

V is “new” and that the real resonanceV is “new”,
and define

πV (dtV ) = dtV , d1
λ0

V
= −1 , d0

λ0
V

=
ω0·νλ0

V
(t)

ω0·νλV (t)

∑
t∗
V
δ(tV − t∗V ) , (3.13)

wheret∗V are the solutions (at most 2) of the equation|ω0 · νλ0
V

(t)| = 2nλV
+2 for tV ,

and the interpolated momentaνλ(t) are defined asνλ(t) = ν0
λ if λ is not contained in

any resonance paths and, otherwise

νλ(t) = ν0
λ +

∑
V : λ∈QV

ν0
λV

∏
W⊆V : λ∈QW

tW , (3.14)

where the sum and the product are over all resonancesV,W verifying the conditions
indicated andν0

λ is the sum of all the momenta of nodes precedingλ and inside the
smallest resonance containing it whenλ is inside a resonance, (see (5.13) in [BGGM]).
(4) Recalling thatλ′

V denotes the line exiting the resonanceV , define

P0(ϑ) =
∏

λ 6∈∪V λ′
V

χ(2−nλω0 · νλ(t))
ω0 · νλ(t)

, N (ϑ) =
∏
λ∈ϑ̂
λ=xy

νx · fνy
, (3.15)

3 Note that we, in fact, proceeded by first fixing the scales of the lines outside the maximal resonances, and
at the first step we fixed the scales of lines just inside such first generation resonances, at the second step also
the scales of the lines inside the second generation of resonances were fixed, and so on.
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and denote by3 the functionV → {λ0
V , zV }.

(5) Define
R Val(ϑ) = N (ϑ) RD(ϑ) , (3.16)

where

RD(ϑ) =
∑
3

∫ 1

0

( ∏
V ∈V

π(dtV )
)
P0(ϑ)

∏
V ∈V

dzV

λ0
V

(ω0 · νλ0
V

(t))∗
, (3.17)

and the∗ means that (ω0 · νλ0
V

(t))∗ = ω0 · νλ0
V

(t) if the resonance is new, and (ω0 ·
νλ0

V
(t))∗ = ω0 · νλV

(t) if the resonance is old.

Remark 3.10.By Definition 3.3, we have|ω0 · νλ(t)| ≥ 2
3|ω0 · ν0

λ|, uniformly in t.

3.11. Then, from the iterative procedure and with the just introduced notations, we
obtain ∑

ϑ

Val(ϑ) =
∑

ϑ

R Val(ϑ) , (3.18)

as all terms discarded in each Taylor expansion add to zero when summed together (as
a corollary of Lemma 3.6).

The number of terms thus generated is, at fixedV , bounded by the product over
V ∈ V of 2 times the number of pairs that are inV/ ∪W⊂V,W∈V W and therefore
it is bounded by 2k

∏
V k(V )2 if k(V ) is the number of nodes inV which are not in

real resonances insideV . Hence this number is≤ (24)k. The number of families of real
resonances in̂ϑ (hence at fixed{νv}) is also bounded by 2k.

3.12. After applying theR operations, we see that the contribution to the new “renor-
malized value" from the divisors in (3.10) will be bounded by the same product appearing
in the non-renormalized values of the graphsdeprived of the divisors due to the lines
λ′

V exiting resonancestimes a factor

24k
∏

V ⊂ϑ

1
minλ∈V0 |ω0 · νλ(t)| ≤ Ck

2

∏
V ⊂ϑ

1

minλ∈V0 |ω0 · ν0
λ|

≤ Ck
1

∏
V ⊂ϑ

[ ∑
v∈V0

|νv|
]τ

,

(3.19)
where the factor 24k arises from Remark 3.8,C2 = 24 · (3/2) from Remark 3.10,C1 =
C0C2 andV0 is the set of nodes inside the real resonanceV not contained in the real
resonances internal toV .

In order to bound the factorP0(ϑ) given by (3.15), we can identify the real resonances
V ∈ V of different generations; the setV j of real resonances of thejth generation,
j ≥ 1, just consists of the real resonances which are contained in (j − 1)th generation
real resonances (of lower scale) but not in any (j + 1)th generation real resonances.

If V is a real resonance inV j with entering lineλV = vb
V v

1
V and outgoing line

λ′
V = v0

V v
a
V with momentumνλV

we can construct a “V -contracted graph" by replacing
the clusterV together with the incoming and outgoing lines by the single linev0

V v
1
V :

i.e.by deleting the resonanceV and replacing it by a line. We can also construct the
“V -cut graphs” by deleting everything but the lines of the resonanceV and its entering
and outgoing lines and, furthermore, by deleting the outgoing lineλ′

V as well as the
nodevV

a and attributing to the nodev1
V an external momentum equal to the momentum

flowing into the entering line in the original graphϑ: thus we getpva
V

disconnected
graphs.
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We repeat the above two operations until we are left only with graphsϑi, i = 1, 2, . . .
without real resonances: by construction the product

∏
λ∈ϑ |ω0 ·νλ(t)|−1 is the same as

the
∏

i

∏
λ∈ϑi

|ω0 · νλ(t)|−1.
Then we imagine to delete as well the lines of the variousϑj which were generated

by the old entering lines (not allϑi contain such lines, but some do) and we callϑ0
i the

graphs so obtained. By doing so we change the momenta flowing into the lines of the
graphsϑi by an amount which is either0 or the old momentumνλV

(t) entering a real
resonanceV , and from Remark 3.10, we have

|P0(ϑ)| ≤ Ck
1

( ∏
i

∏
λ∈ϑ0

i

|ω0 · ν0
λ|−1

)
, (3.20)

and using Lemma 3.4 it follows

∏
i

∏
λ∈ϑ0

i

|ω0 · ν0
λ|−1 ≤ Ck

∏
i

∏
v∈ϑ0

i
|νv| η

2 τ

(
∑

v∈ϑ0
i
|νv|)τ , (3.21)

with η = 6 (see also [BGGM]. Then (3.17)÷(3.21), bounding the last product in (3.17)
by (3.19), imply ∣∣∣RD(ϑ)

∣∣∣ ≤ CkCk
1

∏
v∈ϑ

|νv|
η
2 τ , η = 6 . (3.22)

Note that (3.22) and our discussion leading to it is a version of the proofs in [E1,E2]
and in the case of analyticf the Fourier coefficientsfν are exponentially bounded as
|ν| → ∞ so that (3.22) yields the convergence of the perturbation series forh.

4. Ultraviolet Cancellations

The ultraviolet cancellations are characteristic of the linearization problems relative to
(1.1), (1.2). They are quite different from the infrared ones discussed in Sect. 3 and
the main technical problem, besides their identification, is their compatibility with the
infrared cancellations. Exhibiting the two cancellations may not be possible simulta-
neously in the sense that the first cancellations may require grouping graphs in classes
that are completely different from the groupings that are necessary to exhibit the second
cancellations. If this happens one says that the cancellations are not independent, or
“overlap”, and it is clear that one runs into serious problems.

Hence the following analysis will be mostly devoted to showing that, besides an
obvious incompatibility that can be explicitly resolved, the two cancellations are in fact
independent.

4.1. Given a graphϑ, we can define the (ultraviolet) “scale” hv of the nodev to be the
integerhv ≥ 1 such that 2hv−1 ≤ |νv| < 2hv . We say that the labels{νx} and{hx}
are “compatible” if |νv| ∈ [2hv−1, 2hv ) for all v ∈ ϑ. The compatibility relationship
between{νx} and{hx} will be denoted{νx} comp{hx}.

Then we can write∑
ϑ

RVal(ϑ) =
∑
ϑ0

∑
{νx}

RVal(ϑ0, {νx}) =
∑
ϑ0

∑
{hx}

∑
{νx} comp{hx}

RVal(ϑ0, {νx}) .

(4.1)
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Hereϑ0 denotes a graph with infrared scale labels only,ϑ = (ϑ0, {νx}). The infrared
scale labels need not be explicitly declared.Noneof the following operations will modify
the infrared scale of the momentum flowing in a line, thus it is possible using a notation
in which the infrared scale labels (needed in the infrared cancellations discussions) do
not appear explicitly.

SetQ = ∪V ∈V QV , whereV is the set of all resonances ofϑ andQV is the resonance
path of the resonanceV (see Sect. 3.5):howeverfrom now on we shall consider not
only real resonancesbut also virtual resonancesreferring to them occasionally just as
“resonances”. The notion of resonance paths makes sense also for virtual resonances: see
below (end of Sect. 4.6, or [BGGM]) for a discussion of why the consideration of virtual
as well as real resonances (which seem purely infrared problem objects) is necessary
in the ultraviolet problem. DefineBv the subset of the nodesw among thepv nodes
immediately precedingv such that the branchvw is not on the resonance pathsQ of
real or virtual resonances. The generally larger set ofall nodes immediately preceding
v can be denoted̄Bv: Bv ⊆ B̄v.

Given a set of momenta and a fixed node ¯v ∈ ϑ0, we define the change of variables
Uσw

v̄w : Z` ↔ Z`, wherew ∈ Bv̄, by fixing a signσw = ±1 and definingUσw
v̄w ({νx}) =

{ν ′
x} as:

ν ′
z =σwνz, z ≤ w ,

ν ′
z =νz, for all otherz 6= v̄ ,
ν ′

v̄ =ν v̄ + (1− σw)
∑
z≤w

νz 6= ν v̄ + (1− σw)νλw ,
(4.2)

so that, for any choice of the subsetB1v̄ ⊆ Bv̄ of nodes immediately preceding ¯v, there
are cancellations, see Remark 4.2 below, which allow us to write

∑
{σw}w∈B1v̄

RVal(ϑ0,
∏

w∈B1v̄

Uσw
v̄w {νx}) ≡

∫ 0

1

( ∏
w∈B1v̄

dtw
)
·

·
∑

||mv̄||=pv̄

( ∏
w∈B1v̄

∂

∂tw

)(
fjνv̄(tv̄) (ν v̄(tv̄))mv̄

)
· R

{ 1
ω0 · νλv̄

Val′(ϑ0)
}
,

(4.3)

where

(i) Val′(ϑ0) is a tensor containing all the other factors of the graph value relative to
nodesv’s different fromv̄.

(ii) The free indices of thepv̄-order tensorν v̄(tv̄)mv̄ are contracted (by performing the∑
mv̄

) with the ones that appear in the tensor Val′(ϑ0), andmv̄ is a` dimensional
positive integer components vector (with||mv̄|| denoting the sum of the compo-
nents; see comments after (1.4)) and, given a vectorb, we putbmv̄ = bmv̄1

1 . . . bmv̄`

` ;
furthermoretv̄ = (tw1, . . . , tw|B1v̄| ) andν v̄(tw1, . . . , tw|B1v̄| ) ≡ ν v̄(tv̄) is defined as

ν v̄(tv̄) = ν v̄(tw1, . . . , tw|B1v̄| ) = ν v̄ +
∑

w∈B1v̄

2tw νλw = ν v̄ +
∑

w∈B1v̄

tw
( ∑

z≤w

2νz

)
,

(4.4)
whereν v̄(tv̄) = ν v̄ if B1v̄ = ∅.

(iii) The assumed form (1.5) of thefν allows us to think thatfν is defined onR` rather
than onZ` and hence to give a meaning to the derivatives offνv(tv).
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(iv) We use here and henceforth thatR actsonly on the product of propagatorsD(ϑ)
(see (2.5) and (3.16)), and the fact that the definition ofBv after (4.1) yields that all
real or virtual resonances remain such under the action of the change of variables
(4.2).

Remark 4.2.The cancellations are due to the fact that the change of variables (4.2)
leaves unchanged each factor (νv′ · fνv

)[ω0 · νλv ]−1, except for the nodesw and v̄,
whose factors are modified in the following way:

ν v̄ · fνw

ω0 · νλw

→ − (ν v̄ + ζw) · fνw

ω0 · νλw

, nodew

ν v̄′ · fνv̄

ω0 · νλv̄

→
(ν v̄′ ) · fνv̄+ζw

ω0 · νλv̄

, nodev̄

with ζw = 2νλw : then, if we setζw = 0, the sum of the two graph values cancel exactly:
hence their sum can be written via an interpolation formula like (4.3).

4.3. We can study the sumSk(ϑ0) =
∑
ν |ν|s|RW (ϑ0,ν)|, whereW (ϑ0,ν) is defined

in (2.8) andRW (ϑ0,ν) is defined as in (2.8) with Val(ϑ) replaced byRVal(ϑ).4 From
the tree structure of the graphs defining the “value” it follows that

Sk(ϑ0) =
∑
ν

|ν|s
∣∣∣RW (ϑ0,ν)

∣∣∣ =

=
∑
ν

|ν|s
∣∣∣fjνv1

(νv1)
mv1 R

{ 1
ω0 · ν

∏
w∈Bv1

[ ∑
νλw

W (ϑ0
v1w,νλw

)
]}∣∣∣ , (4.5)

wherev1 is the highest node andνv1 = ν̃−
∑

w∈Bv1
νλw

with ν̃ = ν−
∑

w∈B̄v1\Bv1
νλw

.

Fixedν̃ and{νλw
}w∈Bv1

lethv1 ≡ hv1(ν̃, {νλw
}w∈Bv1

) bethe scale ofνv1: i.e.νv1

is such that 2hv1−1 ≤ |νv1| < 2hv1 . We shall say, see Sect. 3.5 and Sect. 4.1, thathv1 is
“compatible” with νv1 if νv1 has scalehv1.

Givenw with w′ = v1 we say thatw is “out of order” with respect tov1 if, for a
suitably largeo which below we fixo = 5 as this turns out to be sufficient, it is

2hv1 > 2opv1|νλw | , (4.6)

wherepv is the number of branches enteringv. We denoteB1v1 ≡ B1v1(ν̃, {νλw
}w∈Bv1

)
⊆ Bv1 the nodesw ∈ Bv1 which are out of order with respect tov1. The number of
elements inB1v1 will be denotedqv = |B1v1|. Note that the notion ofw being out of
order with respect tov1 depends on{νλw}w∈Bv1

andν̃.
Given a set{νλw

}w∈Bv1
for all choices ofσw = ±1 we define the transformation

U ({νλw
}w∈Bv1

) ≡ {σwνλw
}w∈Bv1

, (4.7)

and given a setC ⊆ Bv1 we callU (C) the set of all transformationsU such thatσw = 1
for w 6∈ C.

If [2h−1, 2h) is a scale intervalIh, h = 1, 2, . . . we call
• the “first quarter” ofIh the “lower part” I−

h = [2h−1, 5
42h−1) of Ih,

4 The reader familiar with [BGGM] can skip the following discussion, which is essentially identical to the
one in [BGGM], Sect. 4, and leap directly to the final expression (4.27) in Sect. 4.7.
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• the “fourth quarter” ofIh the “upper part” I+
h = [ 7

82h, 2h) of Ih, and
• the remaining part the “central part” Ic

h of Ih.
We group the set of branch momenta{νλw

}w∈Bv1
into collections by proceeding

iteratively in the way described below. The collections will be built so that in each
collection the cancellation discussed in Remark 4.2 above can be exhibited.

Fixedν̃ andh choose{ν1
λw

}w∈Bv1
such that|ν1

v1
| ∈ Ic

h: such{ν1
λw

}w∈Bv1
is called

a “representative”. Given the representative we define
• the “branch momenta collection” to be the set of the{νλw}w∈Bv1

of the form

U ({ν1
λw

}w∈Bv1
), U ∈ U (B1v1(ν̃, {ν1

λw
}w∈Bv1

)) ; (4.8)

• the “external momenta collection” to be the set of momenta

ν1U
v1

= ν −
∑

w∈B̄v1

σwν
1
λw
, for U ∈ U (B1v1(ν̃, {ν1

λw
}w∈Bv1

) , (4.9)

where, here and below, we setσw ≡ 1 if w ∈ B̄v1/Bv1 to unify the notation.
The elements of the above constructed external momenta collection need not be

necessarily contained inIc
h.

We consider then another representative{ν2
λw

}w∈Bv1
such that|ν2

v1
| ∈ Ic

h andnot
belonging to the branch momenta collection associated with{ν1

λw
}w∈Bv1

, if there are
any left; and we consider the corresponding branch momenta and external momenta
collections as above. We proceed in this way until all the representatives such thatνv1

is in Ic
h, for the givenh, have been put into some collection of branch momenta.

We then repeat the above construction with the intervalI−
h replacing theIc

h, always
being careful not to consider representatives{νλw

}w∈Bv1
that appeared as members

of previously constructed collections. It is worth pointing out that not all the external
momentaνU

v1
, U ∈ U (B1v1(ν̃, {νλw}w∈Bv1

)), are inI−
h , but they are all in the corridor

I+
h−1 ∪ I−

h , by (4.6).
Finally we consider the intervalI+

h−1, (if h = 1 we simply skip this step). The
construction is repeated for such intervals.

Proceeding iteratively in this way starting fromh = 1 and, after exhausting all the
h = 1 cases, continuing with theh = 2, 3 . . . cases, we shall have grouped the sets
of branch momenta into collections obtainable from a representative{νλw}w∈Bv1

by
applying the operationsU ∈ U (B1v1(ν̃, {νλw

}w∈Bv1
)) to it. Note that, in this way,

when the intervalI+
h−1 is considered, all the remaining representatives are such that

|νU
v1

| ∈ I+
h−1 for all U ∈ U (B1v1(ν̃, {νλw

}w∈Bv1
)).

The graphs with momenta in each collection are just the graphs involved in the
parity cancellation described in the previous section. In fact ifU is generated by the
signs{σw}w∈Bv , we have

νU
v1

=
(

(
∏

w∈B1v1

Uσw
v1w){νx}

)
v1

,

(U ({νλw̃
}w̃∈Bv1

))w =
∑
z≤w

(
(

∏
w̃∈B1v1

Uσw̃
v1w̃

){νx}
)

z
,

(4.10)

where, given the sets{νx} and{νλw̃}, ({νx})v denotes the external momentum in{νx}
corresponding to the nodev and ({νλw̃})w denotes the branch momentum in{νλw̃}
corresponding to the branchλw.
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Remark 4.4.The complexity of the above construction is due to the necessity of avoiding
overcountings, called “overlapping divergences” in the usual language of field theory.
In fact it is possible that, for someU ∈ U (B1v1(ν̃, {νλw

}w∈Bv1
), one has

B1v1(ν̃, U ({νλw
}w∈Bv1

)) 6= B1v1(ν̃, {νλw
}w∈Bv1

) , (4.11)

because the scale ofνU
v1

may beh − 1, while that ofνv1 may beh; so that if one
considered, for instance,I+

h−1 beforeI−
h overcountings would be possible, and in fact

they would occur.

4.5. A convenient way to rewrite (4.5) is the following:

Sk(ϑ0) =
∑
ν

|ν|s
∣∣∣ ∑

hv1

∗∑
{νλw }w∈B̄v1

∑
U∈U (B1v1)

fjνU
v1

(νU
v1

)mv1 ·

· R
{ 1
ω0 · ν

∏
w∈B̄v1

W (ϑ0
v1w, σwνλw )

}∣∣∣ ,
(4.12)

where
∑∗

{νλw }w∈Bv1
means sum over the above defined representatives such thatνv1 is

compatible withhv1; and we abbreviateB1v1(ν̃, {νλw
}w∈Bv1

) byB1v1 in conformity with
the notations introduced after (4.6). The explicit sum over the scaleshv1 is introduced
to simplify the bounds analysis that we perform later, see Sect. 4.8. Note thatνU

v1
is, in

general, not compatible withhv1, i.e.we are grouping together also terms with a different
scale label (but the difference in scale is at most one, see (4.16) below).

The parity properties off ,

W (ϑ0
v1w, σwνλw

) = σwW (ϑ0
v1w,νλw

), (4.13)

and (4.12) imply

Sk(ϑ0) =
∑
ν

|ν|s
∣∣∣∑
hv1

∗∑
{νλw }w∈B̄v1

∑
U∈U (B1v1)

fjνU
v1

(νU
v1

)mv1 ·

· R
{( ∏

w∈B1v1

σw

) 1
ω0 · ν

∏
w∈B̄v1

W (ϑ0
v1w,νλw )

}∣∣∣ . (4.14)

We can apply the interpolation in (4.3) to the nodev and rewrite (4.14) as

Sk(ϑ0) =
∑
ν

|ν|s
∣∣∣ ∑

hv1

∗∑
{νλw }w∈B̄v1

[ ∑
||mv1 ||=pv1

∫ 0

1

( ∏
w∈B1v1

dtw
)
· (4.15)

·
( ∏

w∈B1v1

∂

∂tw

)(
fjνv1(tv1)

(
νv1(tv1)

)mv1

)]
· R

{ 1
ω0 · ν

∏
w∈B̄v1

W (ϑ0
v1w,νλw )

}∣∣∣ ,
where ifB1v1 = ∅ no interpolation is made; and we note that by (4.3), by the definition
of nodes out of order and by the iterative grouping of the representatives,
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2hv1−2 ≤ |νv1(tv1)| < 2hv1 , (4.16)

so that the interpolation formulae discussed in Sect. 4.1can be usedbecause no singu-
larity arises in performing thetv1-integrations.

By the definition ofW (ϑ0,ν), (see (2.8)), we can write (4.15) as

Sk(ϑ0) =
∑
ν

|ν|s
∣∣∣ ∑

hv1

∗∑
{νλw }w∈B̄v1

[ ∑
||mv1 ||=pv1

∫ 0

1

( ∏
w∈B1v1

dtw
)
·

·
( ∏

w∈B1v1

∂

∂tw

)(
fjνv1(tv1)

(
νv1(tv1)

)mv1

)]
·

· R
{ 1
ω0 · ν

∏
w∈B̄v1

∑
{νx}x≤w : ν(ϑv1w)=νλw

Val(ϑv1w)
}∣∣∣ .

(4.17)

If we use (see (4.3))

∂

∂tw
≡

(
2νλw · ∂

∂ν

)
ν=νv(tv)

≡
( ∑

z≤w

2νz · ∂

∂ν

)
ν=νv(tv)

, (4.18)

to compute differentiations with respect totw, we can write (4.15) as

Sk(ϑ0) =
∑
ν

|ν|s
∣∣∣ ∑

hv1

∗∑
{νλw }w∈B̄v1

{ ∑
||mv1 ||=pv1

∫ 0

1

( ∏
w∈B1v1

dtw
)
·

·
(
|ν̄|−(pv1−qv1) ∂

qv1

∂ν̄qv1
fjν̄

(
ν̄
)mv1

)
ν̄=νv1(tv1)

}
·

·
[ ∏

w∈B1v1

( ∑
z≤w

2νz

)][ ∏
w∈B̄v1\B1v1

|νv1(tv1)|
]
·

· R
{ 1
ω0 · ν

∏
w∈B̄v1

[ ∑
{νx}x≤w : ν(ϑv1w)=νλw

Val(ϑv1w)
]}∣∣∣ ,

(4.19)

where we recall thatqv1 = |B1v1|; here the factor|ν̄|−(pv1−qv1) (which, computed for
ν̄ = νv1(tv1), is identical to the inverse of [

∏
w∈B̄v1\B1v1

|νv1(tv1)|]) has been introduced
so that a “dimensional” estimate (i.e.an estimate based on the homogeneity of the
functions involved) of the factor in the second line of (4.19) can be taken proportional
to 2−hv1b (see the homogeneous form of the functionf , Sect. 1.3, and (4.16)).

If w ∈ B̄v1 \ B1v1 we have∏
w∈B̄v1\B1v1

|νv1(tv1)| =
∏

w∈B̄v1\B1v1

(2opv1) x̃v1w(tv1) · νλw
=

=
∏

w∈B̄v1\B1v1

(2o−1pv1) x̃v1w(tv1) ·
∑
z≤w

(2νz) ,
(4.20)

wherex̃v1w(tv1) is a suitable vector depending onνλw
but not on the individual terms

νz, and such that|x̃vw(tv1)| < 1.
We obtain, with the above notations:
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Sk(ϑ0) =
∑
ν

|ν|s
∣∣∣ ∑

hv1

∗∑
{νλw }w∈B̄v1

{ ∑
||mv1 ||=pv1

( ∫ 0

1

∏
w∈B1v1

dtw

)
·

·
( Yv1(tv1)

|ν̄|pv1−qv1

∂|B1v1 |

∂ν̄|B1v1 | fjν̄

(
ν̄
)mv1

)
ν̄=νv1(tv1)

}[ ∏
w∈B̄v1

( ∑
z≤w

2νz

)]
·

R
{ 1
ω0 · ν

∏
w∈Bv1

[ ∑
{νx}x≤w : ν(ϑv1w)=νλw

Val(ϑv1w)
]}∣∣∣ ,

(4.21)

where the tensor
Yv1(tv1) =

∏
w∈B̄v1\B1v1

24pv1x̃v1w(tv1) (4.22)

depends also on ˜ν and{νλw
}w∈Bv1

(although this dependence is not shown, to simplify
the notation), and has to be contracted with the external momentaνz, z ≤ w ∈ B̄v1 \Bv1.

4.6. Developing the sum
∑

z≤w 2νz in (4.21), the quantitySk(ϑ0) is given by a sum of
terms corresponding to a collection of nodes lying on the pathsP (v1, z(v1, w)) leading
from v1 to a nodez: the collection is defined by the “choices" of one particular addend
2νz in the sum

∑
z≤w 2νz, with z = z(v1, w), w ∈ B̄v1. Therefore, in general, we can

think that (4.21) corresponds to a sum over a collection of pathsP (v1, z(v1, w)) for the
w ∈ B̄v1. The paths are regarded as totally ordered (and gapless) sequences of nodes on
ϑ0.

We can callP1 the family of the possible collections of paths that arise when ex-
panding the sums

∑
z≤w in (4.21): each elementP 1 of P1 can be identified with one

contribution to (4.21). And, by using the notationtv = {tw}w∈B1v
as in (4.3), the result

is the following more explicit interpolation formula reexpressing the r.h.s. of (4.21),

Sk(ϑ0) =
∑
ν

|ν|s
∣∣∣ ∑

hv1

∑
P 1∈P1

∗∑
{νλw }w∈Bv1

{ ∑
||mv1 ||=pv1

∫ 0

1

( ∏
w∈B1v1

dtw

)
·

·
( Yv1(tv1)

|ν̄|pv1−qv1

∂qv1

∂ν̄qv1
fjν̄

(
ν̄
)mv1

)
ν̄=νv1(tv1)

}
·
( ∏

z:P (v1,z)∈P 1

2νz

)
·

· R
{ 1
ω0 · ν

∏
w∈B̄v1

[ ∑
{νx}x≤w : ν(ϑv1w)=νλw

Val(ϑv1w)
]}∣∣∣ ,

(4.23)

where the interpolation is considered whenB1v1 6= ∅ (i.e.when it makes sense), and the
indices have to be contracted suitably.

The above formula can be rewritten as

Sk(ϑ0) =
∑
ν

|ν|s
∣∣∣ ∑

hv1

∗∑
{νλw }w∈B̄v1

∑
P 1∈P1

( ∏
v∈[P 1]

∑
{νλy }y∈B̄v

)

R
{ ∑

||mv1 ||=pv1

∫ 0

1

( ∏
w∈B1v1

dtw

)
·
( Yv1(tv1)

|ν̄|pv1−qv1

∂qv1

∂ν̄qv1

fjν̄

(
ν̄
)mv1

ω0 · ν

)
ν̄=νv1(tv1)

·
∏

v∈[P 1]

∑
||mv||=pv

(2νv)ηv
f 1
νv

(νv)mv+1

ω0 · νλv

∏
y∈Bv/[P 1]

Val(ϑvy)
}∣∣∣ ,

(4.24)
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where
• [P 1] =

⋃
w∈B̄v1

P (v1, z(v1, w))/{v1},

• f1
νv

= f11
1νv

. . . f1`

`νv
, with ‖1‖ = 1, is contracted with a factor in (νv′ )mv′ , and

• ηv is equal to 1 ifv = z(v1, w) for somew ∈ Bv1 and 0 otherwise.
We are now in position to iterate the resummation done in the previous section

leading from (4.5) to (4.21) and “concerning" the highest nodev1. For each ˜v ∈ P 1,
ṽ < v1, lethṽ = hṽ(ν̃λṽ

, {νλw
}w∈Bṽ

) bethe scale ofν ṽ, i.e.ν ṽ = νλṽ −
∑

w∈B̄ṽ
νλw

is such that 2hṽ−1 ≤ |ν ṽ| < 2hṽ . Here we again denotēBṽ the set of all the nodes
immediately preceding ˜v.

Given an immediate predecessorw of ṽ we say thatw is “out of order” with respect
to ṽ if

2hṽ > 25pṽ|νλw | , (4.25)

wherepṽ is the number of branches entering ˜v. Let Bṽ ⊆ B̄ṽ be the subset of those that
are not on a resonance path. Following the definitions in Sect. 4.1 we also callB1ṽ ≡
B1ṽ(ν̃λṽ , {νλw}w∈Bṽ ) ⊆ Bṽ the nodesw ∈ Bṽ which are “out of order” with respect
to ṽ.

Given a set{νλw}w∈Bṽ for all choices ofσw = ±1 we define

U ({νλw
}w∈Bṽ

) ≡ {σwνλw
}w∈Bṽ

, (4.26)

and given a setC ⊆ Bṽ we callU (C) the set of all transformations such thatσw = 1 for
w 6∈ C. Again we set, for uniformity of notations,σw ≡ 1 forw ∈ B̄ṽ/Bṽ.

We group the set of branch momenta{νλw
}w∈Bṽ

and the external momenta into
collections by proceeding, very closely following the preceding construction, withνλṽ

playing the role ofν, in the way described below.
Fixedνλṽ

andh we choose a{ν1
λw

}w∈Bṽ such that|ν1
ṽ| ∈ Ic

h whereν1
ṽ = νλṽ −∑

w∈B̄ṽ
ν1

λw
.

Then{ν1
λw

}w∈Bṽ
is called a “representative”. For such a representative we define

the “branch momenta collection”, associated with it to be the set of the{ν1
λw

}w∈Bṽ

having the formU ({ν1
λw

}w∈Bṽ ) and the “external momenta collection” to be the set
of momentaν1U

ṽ = νλṽ −
∑

w∈Bṽ
σwν

1
λw

, for U ∈ U (B1ṽ(ν̃λṽ , {ν1
λw

}w∈Bṽ )/[P 1]).
Note again that the above constructed external momenta collection is not necessarily
contained inIc

h.
We consider then another representative{ν2

λw
}w∈Bṽ such that|ν2

ṽ| ∈ Ic
h and does not

belong to the just constructed branch momenta collection associated with{ν1
λw

}w∈Bṽ , if
there is any; and then we consider the branch momenta collections and external momenta
collections obtained from{ν2

λw
}w∈Bṽ by the correspondingU transformations. And,

as previously done, we proceed in this way until all the representatives such thatν ṽ is
in Ic

h are in some external momenta collections.
The construction is repeated for the intervalI−

h , always being careful not to consider
{νλw

}w∈Bṽ
that have been already considered, and finally for the intervalI+

h−1, see
Sect. 4.3.

Proceeding iteratively in this way and considering the same sequence ofh’s as in
the previous case (i.e. the naturalh = 1, 2, . . .), at the end we shall have grouped the
set of branch momenta into collections obtainable from a representative{νλw

}w∈Bṽ
by

applying the operationsU ∈ U (B1ṽ(ν̃λṽ , {νλw}w∈Bṽ
) \ [P1]) to it.

In other words the definition of the representatives{νλw}w∈Bṽ is identical to the
one forv1 except that the collections are defined only by transformations changing the
branch momentum of the lines emerging from the nodes inB1ṽ but not inP 1.
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We repeat the above construction for all ˜v ∈ P 1 until all theṽ ∈ P 1 are considered
starting from the ˜v with ṽ′ = v and, after exhausting them, continuing with ˆv with v̂′ = ṽ
and so on. We call̄Bṽ(P 1) the nodesw immediately preceding ˜v but which are not on
the union of the pathsP ∈ P 1, Bṽ(P 1) the nodesw in B̄ṽ immediately preceding ˜v
which are not in any resonance paths, andB1ṽ(P 1) the nodes inBṽ(P 1) which are out
of order with respect to ˜v; the set of just described transformations will be denoted by
U (B1ṽ(P 1)).

Proceeding as we did for the highest nodev1 and by performing the analogues of the
transformations leading from (4.15) to (4.24), we construct for each ˜v ∈ P 1 new paths
P 2 which, by construction,will not have common brancheswith those inP 1; call P2
the collection of the pairsP 1,P 2. The crucial point is that the factorsx̃vw(tv) are the
same for all the terms generated by the action ofU ∈ U (B1v(P 1)), by (4.20). We iterate
then this procedure.

Eventually we end up by constructing a “pavement” P of the graph with non-
overlapping paths (and the union of the paths does cover the graph); note that the paths
are “ordered”, in the sense that they are formed only by comparable lines.

We callP the collection of all such pavements;Bv(P ), P ∈ P, will be the set of
nodesw immediately precedingv and such that (1)vw is not in any resonance path,
and (2) a pathP (v, z(v, w)) ∈ P starting fromv passes throughw, andB1v(P ) is
the collection of nodes inBv(P ) out of order with respect tov. Note that in general
Bv(P ) ⊆ Bv (unlessv is the highest nodev1, whenBv1(P ) = Bv1), andB̄v(P ) ⊆ B̄v.

Note also that for allP ∈ P the change of variablesU ∈ U (B1v(P )) changes
a graph (ϑ0,νx) into a new graph (ϑ0, (

∏
w∈B1v(P ) U

σw
vw )νx) with the same resonant

clusters(virtual or real).
The set of “path head" nodesv, i.e. the upper end nodes of paths inP , will be

denotedMh(P ): hence ifv 6∈ Mh(P ) (i.e. if no path inP hasv as path head) then
Bv(P ) = ∅; likewiseMe(P ) will denote the set of “path end” nodes,i.e. the nodesz
such thatP (v, z) is a path inP .

The necessity of excluding real and virtual resonance paths from the renormalization
procedures should now be clear, see [BGGM]: it may happen that a pair of successive
nodesvw, v > w, hasvw on the path of areal or virtual resonanceV . Then the
change of variablesU ∈ U (B1v(P )) constructs a graph (ϑ0, {νλ},

∏
w∈B1v(P ) U

σw
vw νx)

in which the line incoming into the resonance carries some momentum−ν while the
outgoing line carries a momentumν: hence in the new graph the clusterV is no longer
a resonance; or, viceversa, it can happen that a virtual resonance becomes real. To avoid
this “interference between ultraviolet and infrared cancellations" wemustexclude the
resonances (virtual or real) from the interpolations.

4.7. Then we see that (4.22) leads to the following “path expansion” for Sk(ϑ0) sum-
marizing our analysis∑
ν

|ν|s|W (ϑ0,ν)| =
∑
ν

|ν|s
∣∣∣ ∑

{hx}

∑
P∈P

∑
{νλ}

∗ ∏
v∈Mh(P )

(4.27)

{ ∫ 0

1

( ∏
w∈B1v(P )

dtw
) ∑

||mv||=pv

Ov

(
f 1
νv(tv) (νv(tv))mv Yv(tv)

)}
RD(ϑ0)

∣∣∣ ,
where
(1) P is a partial pavement of the graph with non overlapping “paths” such that: (1.1)
a pathP (v, z) is a connected set of comparable lines (“ordered paths”) connecting the
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nodev to the nodez < v; (1.2) the resonance paths are not contained in any path;
(1.3) for any lineλ which is not contained in any resonance path there is one path inP
covering it:λ ∈ P (v, z) for someP (v, z) ∈ P ;
(2)Mh(P ) is the collection of upper end nodes of the paths inP , andMe(P ) of lower
end nodes;
(3) Bv(P ) is the set of nodesw immediately precedingv such that (3.1)vw is not in
any resonance path, and (3.2) a pathP (v, z(v, w)) ∈ P starting fromv passes through
w, andB1v(P ) is the set of nodesw ∈ Bv(P ) which areout of order with respect tov,
i.e.such that

2hv > 25pv|νλw
| ; (4.28)

(4) Yv(tv) is defined as

Yv(tv) =

{ ∏
w∈B̄v(P )\B1v(P )(2

4pvx̃vw(tv)) , if v ∈ Mh(P ) ,
1 , otherwise ,

(4.29)

if x̃vw(tv) is the vector defined via the implicit relation

|νv(tv)| = 25pv x̃vw(tv) · νλw
, (4.30)

so that|x̃vw(tv))| ≤ 1 andx̃vw(tv)) depends onνλw
but not on the individual external

momenta which add toνλw andB̃v(P ) is the set of nodes verifying (3.2) in item (3);
(5) the operatorOv is defined as

Ov

(
(νv(tv))mv Yv(tv) fνv(tv)

)
=

=
( Yv(tv)

|ν̄||Bv(P )|−|B1v(P )|
∂|B1v(P )|

∂ν̄|B1v(P )| f 1
ν̄ (ν̄)mv (2ν̄)ηv

)
ν̄=νv(tv)

,
(4.31)

with ηv = 1 if v ∈ Me(P ), andηv = 0 otherwise, andf 1
ν defined after (4.24);

(6) the sum over{νλ} has the restriction that the external momentum configuration
{νx} is compatible with the scales{hx};
(7) RD(ϑ0) is the same for all graphs involved in the cancellations mechanisms, as the
moduli of the momenta do not change under the action of the change of variables (4.2),
and the signs are taken into account by the interpolation formula (4.3) (see Remark 4.2).

4.8. We can bound

|ν|s
∏

v∈ϑ0

∥∥∥Ov

(
f 1
νv(tv)(νv(tv))mv Yv(tv)

)∥∥∥ ≤

≤
∏

v∈ϑ0

D1D
pv

2 qv! ppv−qv
v 2hv(1−b+s+ηv) ≤

∏
v∈ϑ0

D3D
pv

4 pv! 2hv(1−b+s+ηv) ,

(4.32)
for suitable constantsDj , and use

∏
v∈ϑ0 |νv| η

2 τ ≤
∏

v∈ϑ0 2hv
η
2 τ , so that∑

{ν}
|ν|s

∣∣∣ ∑
ϑ0

RW (ϑ0,ν)
∣∣∣ ≤

≤ max
P∈P

{
Ck

3

[ ∏
v≤v0

pv!
] ∑

{hx}

∏
v≤v0

[
2hv(pv+s+`+ η

2 τ−b)
∏

P (v,z)∈P
2(hz−hv)

]}
,

(4.33)
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where the number of pavementsP is estimated by 2k, see Appendix A2, in [BGGM].
Then, settingb = 2 +s + ` + η

2τ + µ, with µ > 0, and exploiting the identity

∑
v<v1

hvpv =
∑
v<v1

hv′ , v′
1 = r , (4.34)

one obtains for (4.5) the bound

∑
{ν}

|ν|s
∣∣∣ ∑

ϑ0

RW (ϑ0,ν)
∣∣∣ ≤

≤ Ck
∏
v

pv!
∑
{hx}

[
2−(2+µ)hv0

∏
v<v0

2−(1+µ)hv

∏
vw∈Q

2hv−hw

]
, (4.35)

for a suitable constantC.
We see that there is at most one factor 2hv−hw per nodev, because the resonance paths

are totally ordered, so that the factors 2−hv in 2−(1+µ)hv compensate (when necessary) the
factors 2hv in 2hv−hv′ (and 2−hv′ ≤ 1): then the sum over the scales can be performed.

There arek!/
∏

v pv! graphs with givenpv ’s and fixed shape (“Cayley’s formula”,
see [HP]), so that the sum over the graph orders weighed byεk can be performed ifε is
small enough; in particular we obtain thath ∈ C (s)(T`), if f ∈ Ĉ (2+s+ η

2 τ+µ)(T`), with
µ > 0.

4.9. Then we can pass to Eq. (2.10) forH, with Val∗(ϑ) defined in (2.9). In such a case
we give the extra prescription not to apply the ultraviolet interpolation procedure to the
pathC(v1, ṽ); equivalently, modify slightly the definition of the setBv after (4.1):Bv is
the the subset of the nodesw among thepv nodes immediately precedingv such that
the branchvw is neither on the resonance pathsQ nor onC(v1, ṽ).

Then we obtain again a formula like (4.17), with respect to which there are the
following differences.
(1)P is the partial pavement such that, besides the conditions (1.1)÷(1.3) after (4.27),
verifies the further condition: (1.4) there is no overlapping betweenC(v1, ṽ) and any
P (v, z) ∈ P .
(2) If v ∈ C(v1, ṽ), f 1

νv
has to be contracted with a factor in (νv′′ )mv′′ , wherev′′ ∈

C(v1, ṽ) is the node onC(v1, ṽ) immediately precedingv.
(3) If v ∈ C(v1, ṽ), the factors (νv)mv arise from thepv − 1 branches not contained in
C(v1, ṽ) and enteringv and from the branch onC(v1, ṽ) exiting fromv and pointing to
v′.

Since the bound in Sect. 4.8 is independent on the exact structure of the contractions,
the bound (4.35) can be still obtained, so that alsoH ∈ C (s)(T`), if f ∈ Ĉ (2+s+ η

2 τ+µ)(T`),
with µ > 0.

Of course in deriving the above formulae one should take into accountalso the cut
off factorse−κ|ν| appearing in the Fourier coefficientsfνv , which may be stricken by
differentiations: but their contribution is not worse than the terms that we have treated,
as briefly commented in [BGGM], comment following (4.39).

Thus the proof of Theorem 1.4 is complete.
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5. Comparison with the One-Dimensional Schr̈odinger Equation in a Quasi
Periodic Potential

5.1. From Theorem 1.4, one could deduce the existence of Bloch waves for the one-
dimensional Schr̈odinger equation with a potential belonging to a certain class of non-
analytic quasi periodic functions, and one could be tempted to compare the result with
[Pa], see also [PF], where the existence of Bloch waves is proven with the Moser-Nash
techniques for quasi periodic potentials havingp > 2(̀ + 1) continuous derivatives (if̀
is the dimension of the frequency vector of the quasi periodic potential andτ is supposed
to beτ > `−1), with no other restriction on the potential regularity. However, in order to
perform a meaningful comparison between the two results, one has to consider carefully
the exact form of the interaction potential.

5.2. The problem studied in [DS,R,Pa] is the Schrödinger equation[
− d2

dx2
+ εV (x)

]
ψ(x) = Eψ(x) , (5.1)

whereV (x) is a quasi periodic function of the form

V (x) =
∑

ν∈Z`−1

eiω·νx Vν , (5.2)

with ω ∈ R`−1 satisfying a diophantine condition.
The problem to find eigenvalues and eigenfunctions of (5.1) can be easily seen, see

for instance [G2], to be equivalent to solving the equations of motion of the classical
mechanics system described by the Hamiltonian

H =
p2

2
+ ω · B +

q2

2

[
E − εV (β)

]
, (5.3)

with (p, q) ∈ R2 and (B,β) ∈ R`−1 × T`−1. In fact the evolution equation for the
coordinateq is the eigenvalue equation (5.1).

Then it is possible to introduce a canonical transformationC : (p, q) → (A1, α1),
[G2], such that the Hamiltonian (5.3) becomes

H =
√
EA1 + ω · B + εf (α1,β) , f (α1,β) = − A1√

E

(
sin2α1

)
V (β) , (5.4)

which can be reduced to the form (1.3), withA = (A1,B) ∈ R`,α = (α1,β) ∈ T`, and
f (α) = (f (α), 0, . . . , 0). For the proof of such an assertion, we refer to [G2].

And the equations of motions forβ giveβ(t) = β0 + ωt, and the derivatives whose
number can grow up indefinitely, in the expansion described in Sect. 2, are those acting
on theα1 variable:however the perturbation is always analytic inα1.

Thus the assumptions on the interaction potentialV can be weakened, compared
to the ones following from the general result in Theorem 1.4, simply because the one-
dimensional Schr̈odinger equation can be reduced to a classical mechanics problem
with Hamiltonian of the form (1.1), but the interaction term depends analytically onα1,
independently on the regularity of the quasi periodic potential.

In this case the existence of the counterterm can be provedwithout exploiting ultra-
violet cancellations, and the infrared cancellations are sufficient to give convergence of
the perturbative series, provided the quasi periodic potential is so regular to guarantee
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the summability on the Fourier components in the perturbative series: the analysis in
Sects. 3, 4 givesp > ` + 3τ , see Appendix A3 for details.

Then, if τ > ` − 1, one hasp > 4` − 3. With respect to [Pa], the result is weaker
for ` ≥ 3 but, in some respects, better for` = 2. The result in [Pa] has been obtained
by using the Moser-Nash techniques for KAM theory, and it is known that the class of
differentiability of the perturbations of integrable systems can be raised in the KAM
theory above Moser’s result, [P]:then one can conjecture that also for the Schrödinger
equation the ideas in[P] could lead top > 2`. Our resultp > 4`− 3 can be considered,
for ` = 2, a partial improvement of [Pa] in this direction.

We stress that with the techniques described in the present paper, the ultraviolet
cancellations do not enter into the analysis to obtainanalyticity in the perturbative
parameter of the eigenvalueE and of the corresponding eigenfunctionψ(x) in (5.1). It
follows that the techniques of [E2] imply , in this case, our results, although the question
was not relevant for that paper.

5.3. The situation is essentially identical if one consider the Schrödinger equation[
− d2

dx2
+U (x) + εV (x)

]
ψ(x) = Eψ(x), (5.5)

whereU (x) is a periodic potential with frequencyω2 andV (x) a quasi periodic function
of the form

V (x) =
∑

ν∈Z`−2

eiω·νx Vν , (5.6)

with ω ∈ R`−2, such thatω2 andω satisfy a diophantine condition.
The Hamiltonian of the corresponding classical mechanics problem is

H =
p2

2
+ ω2B2 + ω · B +

q2

2

[
E − U (β2) − εV (β)

]
, (5.7)

with (p, q) ∈ R2, (B2, β2) ∈ R1 × T1, and (B,β) ∈ R`−2 × T`−2. If ε = 0, the
Hamiltonian is integrable, [G2,C], so that (5.7) becomes

H = ω01A1 + ω02A2 + ω · B + εA1 f (α1, α2,β) ,

f (α1, α2,β) = −G(α1, α2)V (β) ,
(5.8)

whereG(α1, α2) is a function which depends analytically onα1, [C], Sect. V,VI, in-
dependently on the regularity ofU andV in (5.5). The fact that the interaction is pro-
portional only toA1 (i.e. independent on the other action variables) implies that the
equations of motion forα2 andβ can be trivially integrated and giveα2 = α20 + ω02t
andβj = βj0 + ω0jt, 2 ≤ j ≤ `. Then we can reason as in Sect. 5.2, and the same
conclusions hold.

Appendix A1. Graphs and Graph Rules

We lay down one after the other, on a plane,k pairwise distinct unit segments oriented
from one extreme to the other: respectively the “initial point” and the “endpoint” of the
oriented segment. The oriented segment will also be called “arrow”, “ branch” or “ line”.
The segments are supposed to be numbered from 1 tok.
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The rule is that after laying down the first segment, the “root branch”, with the
endpoint at the origin and otherwise arbitrarily, the others are laid down one after the
other by attaching an endpoint of a new branch to an initial point of an old one and
by leaving free the new branch initial point. The set of initial points of the object thus
constructed will be called the set of the graph “nodes” or “ vertices”. A graph of “order”
k is therefore a partially ordered set ofk nodes with top point the endpoint of the root
branch, also called the “root” (which is not a node); in general there will be several
“bottom nodes” (at mostk − 1).

We denote by≤ the ordering relation, and say that two nodesv,w are “comparable”
if v < w orw < v.

With each graph nodev we associate an “external momentum” or “ mode” which is
simply an integer component vectorνv 6= 0; with the root of the graph (which is not
regarded as a node) we associate a labelj = 1, . . . , `.

For each nodev, we denote byv′ the node immediately followingv and byλv ≡ v′v
the branch connectingv to v′ (v will be the initial point andv′ the endpoint ofλv). If
v1 is the node immediately preceding the rootr (“highest node”) then we shall write
v′

1 = r, for uniformity of notation (recall thatr is not a node).
We consider “comparable” two linesλv, λw, if v, w are such.
If pv is the number of branches entering the nodev, then each of thepv branches

can be thought of as the root branch of a “subgraph” having root atv: the subgraph is
uniquely determined byv and one of thepv nodesw immediately precedingv. Hence
if w′ = v it will be denotedϑvw.

We shall call “equivalent” graphs which can be overlapped by
(1) changing the angles between branches emerging from the same node, or
(2) permuting the subgraphs entering into a nodev in such a way that all the labels
match.

The number of (non-equivalent numbered) graphs withk branches is bounded by
4kk!, [HP].

Appendix A2. Proof of Lemma 3.6

We consider all the graphs we obtain by detaching from each resonance the subgraph
with root vb

V , if vb
V is the node in which the resonance lineλV enters, then reattaching

it to all the nodesw ∈ V . We call this set of contributions a “resonance family”. If one
setsζ ≡ ω0 · νλV

= 0, no propagator changes inside the resonance, and the only effect
of the above operation is that in the factor

[
(νv0

V
· fνva

V

) (νvb
V

· fν
v1

V

)
χ(2−nλω0 · νλV

)
(ω0 · νλV

)2

]
(A2.1)

appearing in (3.3) the external momentumνvb
V

assumes successively the valuesνw,
w ∈ V . In this way, by summing over all the trees belonging to a given resonance
family, we build a quantity proportional to

∑
w∈V νw = 0, by Definition 3.3 of real

resonance.
It is important to note that, by the definition of real resonance, the scale of the lines

internal toV cannot change too much, certainly not enough to break the clusterV (i.e.no
scale of a line internal toV can become smaller thannλV

.)
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Appendix A3. Regularity of the Potential for the Schrödinger Equation in a Quasi
Periodic Potential

The equations of motion of the Hamiltonian system (5.4) for the angle variables are

dα1

dt
= k − ε

1√
E

(sin2α1)V (ω0t) +N1 ,

dβ

dt
= ω0 ,

(A3.1)

where
√
E = k +N1, which can be discussed as in Sect. 2.

We look for a “Bloch wave” with momentumk and energyE assuming that the
vector (k, ω0) is diophantine (i.e.a quasi periodic solution with rotation vector (k, ω0)).
Following [G2] we regard the1√

E
in (A3.1) as a parameter to be fixed later: we can deduce

in fact that the solution to (A3.1), and in particularN1 = N1(ε, E) as a function ofε and
E, is analytic in ε√

E
and therefore the “dispersion relation” equation

√
E = k+N1(ε, E)

can be easily solved (see [G2]). A formula in terms of graphs (2.6) can be still obtained,
where Val(ϑ), defined in (2.4), becomes

Val(ϑ) =
∏
v<r

(
− 1√

E

) νv′sνv
Vνv

kνλv
+ ω0 · νλv

, (A3.2)

whereνv,νλv ∈ Z`−1, νv ∈ {−2, 0, 2} ∀v ∈ ϑ, s±2 = −4−1, s0 = 2−1, and we
decomposed

V (β) =
∑
ν∈Z`−1

eiν·β Vν , sin2α1 =
∑

ν=0,±2

eiνα1 sν . (A3.3)

Then one sees that no problem arises from the numerators, (as the only appearing external
momenta are of the formνv, and sin2α1 is a trigonometric polynomial inα1), while
the small divisors can be dealt with through Lemma 3.4. This gives a factor|νv|3τ

per node, so that summability on the Fourier labels requires at leastV ∈ C (p)(T`−1),
p > 3τ + `− 1.

The equations of motion for the action variables give

dA1

dt
= ε

A1√
E

∂ sin2α1

∂α1
V (ω0t) ,

dB
dt

= ε
A1√
E

sin2α1
∂V (β)
∂β

∣∣∣
β=ω0t

,

(A3.4)

so that we can reason as above, with the only difference that the highest node of the graph
v1 has a factorνv1 which requires, to guarantee the summability onνv1,V ∈ C (p)(T`−1),
with p > 3τ + `.

Then one has to require at leastV ∈ C (p)(T`−1), p > 3τ + `, in order to have
h1 ∈ C (1)(T1), as it has to be for the Schrödinger equation (5.1) to be meaningful, if
one recalls that (1) the wave functionψ(x) solving (5.1) has to be of classC (1) for
V ∈ C (0), and (2)ψ(x) = q(x), whereq is the variable related withα1 by the canonical
transformationC defined before (5.4).5

5 Note that if we confine ourselves to the classes of functions introduced in Sect. 1.3, item (3), then we
have to requireV ∈ Ĉ(p)(T`−1), p > 3τ + 1, in order to haveψ ∈ C(1).



734 F. Bonetto, G. Gallavotti, G. Gentile, V. Mastropietro

Appendix A4. Comparison between Moser’s Counterterms Theorem and the Coun-
terterms Conjecture in [G1]

A 4.1. In [M1] a perturbation theory for quasi-periodic solutions of a nonlinear system of
ordinary differential equations is developed. Up to a (trivial) coordinate transformation,
the system can be written in the form

dx
dt

= ω + εf (x, y; ε) ,

dy
dt

= �y + εg(x, y; ε) ,
(A4.1)

wherex ≡ (x1, . . . , xn) ∈ Rn, y ≡ (y1, . . . , ym) ∈ Rm, ω ∈ Rn, � is a constant
m×m matrix with eigenvalues�1, . . . ,�m, andf andg are functions with period 2π
in x1, . . . , xn and analytic inx, y andε (in suitable domains).

If the characteristic numbersω1, . . . , ωn,�1, . . . ,�n verify the “generalized dio-
phantine condition”

C0

∣∣∣i n∑
j=1

νjωj +
m∑
i=1

µi�i

∣∣∣ ≥
(
|ν|τ + 1

)−1
, (A4.2)

with ν ≡ (ν1, . . . , νm) ∈ Zn, |ν| =
∑n

j=1 νj , and (µ1, . . . , µm) ∈ Zm, then there exists
unique analytic vector valued functionsλ(ε) andm(ε) and a unique analytic matrix
valued functionM (ε) such that the modified system

dx
dt

= ω + εf (x, y; ε) + λ(ε) ,

dy
dt

= �y + εg(x, y; ε) + m(ε) +M (ε)y ,
(A4.3)

admits a quasi periodic solution with the same characteristic number as the unperturbed
one, [M1], Theorem 1.

A 4.2. Let us consider the case in whichm = n = `, � = 0, and there exists a function
H0 = ω · y + εf (x, y; ε) such thatf = ∂yf andg = −∂xf . Then the system (A4.1)
becomes the system studied in [GM2], Sect. 8.

Under the same hypotheses, if moreoverf (x, y; ε) ≡ εy · f (x) for some functionf ,
(A4.1) and (A4.3) become the equations of motion of systems described by the Hamilto-
nians, respectively, (1.1) and (1.3). In fact the linearity in the action variables of the term
added to the HamiltonianH0 in (1.3) leads to a term independent of the action variables
in the equations of motion,i.e.N(ε) ≡ λ(ε), while the countertermsm(ε) andM (ε) are
identically vanishing as a consequence of the symplectic structure of the equations of
motion (as one can arguea posteriorifrom Theorem 1.4 in Sect. 1).

In the general case in which the functionf (x, y; ε) appearing in the HamiltonianH0
depends arbitrarily (but always analytically) ony, the systems studied in [M1] (under
the same hypotheses as above) and in [GM2] are no longer equal to each other,i.e. the
modified system (A4.3) isnot the system with Hamiltonian considered in Eq. (1.10) of
[GM2], so that Theorem 1.4 in [GM2] cannot be reduced to the results of [M1]: in fact
not only there will be no more a trivial relation between the countertermsN(ε) andλ(ε),
but also the equations of motion solutions will be different from each other.
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Note however that the result following from Moser’s theorem applied to such a
system (i.e.a Hamiltonian system with� = 0) can be (trivially) reproduced with our
techniques. Also an extension of our techniques to Hamiltonian systems (verifying the
anisochrony condition) such that� 6= 0 could been envisaged:6 an example in this
direction is in [Ge], where� has eigenvalues�1 = . . . = �`−1 = 0, �` = g2, and the
existence of a countertermM (ε) analytic inε is proven (whileλ(ε) ≡ m(ε) ≡ 0 again
for the symplectic structure of the equations of motion).
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