MATH 2401, PRACTICE TEST 1

1 Let $\mathbf{u}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}, \mathbf{v}(t)=\cos t \mathbf{i}-\sin t \mathbf{j}+t \mathbf{k}$ and $f(t)=e^{2 t}$. Find

$$
\frac{d}{d t}(\mathbf{u} \cdot \mathbf{v}) \quad \frac{d}{d t} f(t) \mathbf{u}(t)
$$

2 Find the length of the curve given by:

$$
\mathbf{r}(t)=6 t \mathbf{i}+3 \sqrt{2} t^{2} \mathbf{j}+2 t^{3} \mathbf{k}
$$

for t from 0 to 1 .
3 The position of a particle is given by $\mathbf{r}(t)=5 t \mathbf{i}+3 t \mathbf{j}+\left(-2 t^{2}+3 t\right) \mathbf{k}$. When is the speed a minimum?

4 Find the curvature of the curve given by $\mathbf{r}(t)=3 \cos 2 t \mathbf{i}+3 \sin 2 t \mathbf{j}+t \mathbf{k}$.
5 Find the domain and range of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}-1}-\ln z$ and write the equation of the level surface that contains the point $\left(1,2, e^{2}\right)$.

6 Find the following limit or show that it does not exists:

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}} \\
& \lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{\sqrt{x^{7}+y^{7}}}
\end{aligned}
$$

7 Compute

$$
\frac{\partial^{2}}{\partial_{x} \partial_{y}}(y \cos y+x y \sin x y)
$$

