Name: Solution

Answer all questions; show all work; closed books, no calculators. THE HONOR CODE APPLIES TO THIS CLASS

Problem	Points	Score
1	50	50
2	50	50
3	50	50
4	50	ς 6
Total	200	200

- 1. (50pts) Let A, B and C be three independent events which occur with respective probability $\mathbb{P}(A) = 1/4$, $\mathbb{P}(B) = 1/2$ and $\mathbb{P}(C) = 1/3$.
 - (a) (25pts) Find the probability that at least one of the events occurs.

(b) (25pts) Find the probability that exactly two of the events occur.

Pleady 2) =
$$P((A^c \cap B \cap C) \cup (A \cap B^c \cap C))$$

 $\cup (A \cap B \cap C) \cup (A \cap B^c \cap C)$
 $= P(A^c \cap B \cap C) \cup P(A \cap B^c \cap C)$
 $+ P(A \cap B \cap C^c)$
 $= P(A^c) P(B) P(C) \cup P(A) P(B^c) P(C)$
 $= \frac{3}{4}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{2}, \frac{1}{3}$
 $= \frac{1}{6} + \frac{1}{24}, \frac{1}{12} = \frac{3+1+2}{24} = \frac{1}{4} = \frac{1}{4}$

- 2. (50pts) A medical doctor wishes to detect a particular chemical substance in a blood sample. A test indicates the presence of this chemical substance, when it is there, 90% of the time; however this test also produces false positive and indicates the presence of this chemical substance, when it is not there, 5% of the time. It is known that 80% of the samples do not contain this substance (and 20% do).
 - (a) (25pts) What is the probability that for a randomly selected sample, the test is positive, i.e., detects the substance?

(b) (25pts) What is the probability that a randomly selected sample does actually contain the substance, given that the test is positive?

$$P(A|B) = P(A\cap B) = P(B|A)P(A)$$
 $P(B) = P(B)$
 $= (0.9)(0.2) = \frac{18}{22} = \frac{9}{11}$

(le finst is)

 $\stackrel{\checkmark}{\smile}$ three sided, and record their respective 3. (50pts) I throw two fair dice, four-sided and the score S_1 and S_2 . Let X be the sum of the scores, i.e., $X = S_1 + S_2$ and let Y be the difference of the scores, i.e., $Y = S_1 - S_2$. Find the joint probability mass function of X and Y. Are X and Y

tales He values Whitiy=S,-S2 tales Ke values

X	-2	-1	0	1	2	3	
2	0	0	1/12	Ø	O	0	
3	0	1/12	σ	1/2	0	0	
4	5/13	0	1/12	0	1/12	0	
-5	0	1/12		\ /		115	
	0	0	7,2	0	Na	0	
-5	0	0	0	1/12	0	0	

P(x,y)(x,y)= TP(X=x, Y=y)= P(S,+Sz=x, S,-Sz=y)

Smee T(x=2,7=-2)=0 + T(x=2)P(x-2)

- 4. (50pts) The sea floor of a particular Tahitian lagoon contains N oysters, where N is a Poisson random variable with parameter 100, and each oyster contains a black pearl, independently of the other oysters, with fixed probability 1/100. Oysters are harvested from the bottom of the lagoon, opened, and let X be the number containing a black pearl.
 - (a) (20pts) Find $p_{X|N=n}$, the conditional pmf of X given $\{N=n\}$, n=0,1,2,...

If N=0; then X=0, and $\mathbb{P}(X=0|N=0)=1$. If N=1, then X=0 or 1, $\mathbb{P}(X=0|N=1)=1-16^2$, $\mathbb{P}(X=1|N=1)=10$

If v= 2, Ken X=0, 2 a 2. Px|n=2 (0) = (1-16-27; px|n=2 = 2.16 (1-16-2)

Px | u=2 (2) = (102).

Mar generally, for a whole any 7,3., X tales Ke

values 0,1,2,-, n ad

(b) (20pts) Find $\mathbb{E}(X|N)$.

$$P_{X|Y=N}(x) = {n \choose x} (10^{-2})^{x} (1-10^{-2})^{x}$$

Sofa N71, 1XIN=n has a binom of pm1

will parameter n and p= 10.

E(XIN=n)= = = x(x)(16-2)x(1-10-2)x-2

= n.107

and = 0 for n=0.

7= E(XIN) = 10-2 N, is a multiple of a Poisson n.v., i.e., Y tales ble values 152 k, le=0,1, 21- with TP(Y=1024)===103(03)2.

(c) (10pts) Find $\mathbb{E}X$, the expectation of X.

Naw EX = E(10-2N)= 10-2N= 10.10 (if you remember that EN= x) = 10.

Could also do-I using the law of "Fot of expedition" EX = [E(XIN=n) P(N=n)

> $=\sum_{n=0}^{\infty} n \cdot 10^{-2} \cdot e^{-10^{3}} \cdot (10^{3})^{n} = 10^{-2} \cdot e^{-10^{3}} \cdot \sum_{n=0}^{\infty} n \cdot 10^{3}$ = 10⁻² = 10³ = 10³