Chapter 6

Maximum Likelihood
Methods

6.1 Maximum Likelihood Estimation

In this chapter we develop statistical inference (estimation and testing) based on
likelihood methods. We show that these procedures are asymptotically optimal
under certain conditions (regularity conditions). Suppose that X1,...,X, are iid
random variables with common pdf f(z;6),6 € Q. In general, we will use pdf rather
than pmf, p(z; ), but the results extend to the discrete case, also. For now, we
assume that 0 is a scalar but we will extend the results to vectors in Sections 6.4
and 6.5. The parameter 8 is unknown. The basis of our inferential procedures is
the likelihood function given by,

n
L(6;x) =[] f(x:;6), 6€Q, (6.1.1)
i=1
where x = (z1,...,%,)’. Because we will treat L as a function of € in this chapter,

we have transposed the z; and 6 in the argument of the likelihood function. In fact
we will often write it as L(f). Actually, the log of this function is usually more
convenient to work with mathematically. Denote the log L(6) by

1(8) = log L(9) = anlog f(zi;60), 6€Q. (6.1.2)
i=1

Note that there is no loss of information in using I(#) because the log is a one-to-one
function. Most of our discussion in this chapter remains the same if X is a random
vector. Although, we will generally consider X as a random variable, for several of
our examples it will be a random vector.

To motivate the use of the likelihood function, we begin with a simple example
and then provide a theoretical justification.
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312 Maximum Likelihood Methods

Example 6.1.1. Let X;, X»,..., X, denote a random sample from the distribution
with pmf

6=(1-6)"* z=0,1
p(z) = { 0 elsewhere,

where 0 < 0 < 1. The probability that X; = 21, X2 = x2,...,X, = z, is the joint
pmf

671 (1 — §)1-=19%2(1 — 9)1==2 ... 6%~ (1 — )1 ~% = % (1 — )"~ 1=,

where z; equals zero or 1, i = 1,2,...,n. This probability, which is the joint pmf
of X1,X2,...,Xn, as a function of 6 is the likelihood function L(6) defined above.
That is,

L(f) =X (1 —9)" 2%, 0<0<1.

We might ask what value of § would maximize the probability L(#) of obtaining
this particular observed sample x1, g, ...,2Z,. Certainly, this maximizing value of
0 would seemingly be a good estimate of 8 because it would provide the largest
probability of this particular sample. Since the likelihood function L(6) and its
logarithm, [(§) = log L(6), are maximized for the same value of 6, either L() or
() can be used. Here

1(0) =log L(6) = (2": :z:i> log 6 + (n - im,) log(1 — 6);
1 1

so we have

dé 0 1-46
provided that € is not equal to zero or 1. This is equivalent to the equation

(l—G)in=0<n—Zwi),

di®) Yz n-) z —0,

n n
whose solution for 6 is Zmi /n. That Zz, /n actually maximizes L(0) and log L(f)

1 1
can be easily checked, even in the cases in which all of x1,zs,...,z, equal zero

n
together or one together. That is, Zmi /n is the value of § that maximizes L(f).

The corresponding statistic

is called the mazimum likelihood estimator of 6. As formally defined below, we will

call Zmi /n the mazimum likelihood estimate of . For a simple example, suppose
1

that n = 3, and 1 = 1, @3 = 0, x3 = 1, then L(A) = 6%(1 — ) and the observed

0= % is the maximum likelihood estimate of 6. m
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Let 6o denote the true value of 8. Theorem 6.1.1 gives a theoretical reason for
maximizing the likelihood function. It says that the maximum of L(#) asymptoti-
cally separates the true model at 6y from models at 8 # 6y. To prove this theorem,
we will assume certain assumptions, usually called regularity conditions.

Assumptions 6.1.1. (Regularity Conditions).

(RO): The pdfs are distinct; i.e., 0 # 0" = f(zi;0) # f(z:;0').
(R1): The pdfs have common support for all 6.

(R2): The point 0y is an interior point in 2.

The first assumption states that the parameters identify the pdfs. The second
assumption implies that the support of X; does not depend on §. This is restrictive
and some examples and exercises will cover models where (R1) is not true.

Theorem 6.1.1. Let 0y be the true parameter. Under assumptions (R0) and (R1),
lim Pyy[L(6,X) > L(8,X)] =1, for all 6 # 6,. (6.1.3)
n—o0

Proof: By taking logs, the inequality L(6p,X) > L(6, X) is equivalent to

1¢ [f(Xi;e) ]

= log |~ <0.

n ; ® | 7(Xi:60)

Because the summands are iid with finite expectation and the function ¢(z) =
—log(x) is strictly convex, it follows from the Law of Large Numbers (Theorem
4.2.1) and Jensen’s inequality, (Theorem 1.10.5), that, when g is the true parame-
ter,

15, [£X:0)] £ f(X1;6) f(X1;6)
n ;log [f(Xi§90)] Foo [log f(Xl;Go)] < log Bo, [f(Xl;Go)] '
Bt 101 [ @)
1; _ T . _
o [m] = | b)) @00 dw =1

Because log1 = 0, the theorem follows. Note that common support is needed to
obtain the last equalities. m

Theorem 6.1.1 says that asymptotically the likelihood function is maximized at
the true value fy. So in considering estimates of 6y, it seems natural to consider
the value of § which maximizes the likelihood.

~

Definition 6.1.1 (Maximum Likelihood Estimator). We say that §= 0(X)
is ¢ maximum likelihood estimator (mle) of 0 if

8 = Argmaz L(6;X); (6.1.4)

The notation Argmaz means that L(6; X) achieves its mazimum value at 8.
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As in the example above, to determine the mle, we often take the log of the
likelihood and determine its critical value; that is, letting {(8) = log L(8) the mle
solves the equation

ol(0)
6 = 0. (6.1.5)
This is an example of an estimating equation which we will often label as an EE.
This is the first of several EEs in the text.
There is no guarantee that the mle exists or if it does whether it is unique. This
is often clear from the application as in the next three examples. Other examples

are given in the exercises.

Example 6.1.2 (Exponential Distribution). Suppose the common pdf is the
exponential(§) density given by (3.3.2). The log of the likelihood function is given

by,
n
1(0) = —nlogh— 67" .
i=1
For this example, differentiable calculus leads directly to the mle. The first partial
of the log-likelihood with respect to 0 is:

0= " 2%

i=1
Setting this partial to 0 and solving for § we obtain the solution Z. There is only one
critical value and, furthermore, the second partial of the log likelihood evaluated
at T is strictly negative, verifying that it is indeed a maximum. Hence, for this
example the statistic § = X is the mle of . m

Example 6.1.3 (Laplace Distribution). Let Xj,..., X, be iid with density
f(z;0) = %e“lm_ol, —00 < T <00,—00 < f < oo. (6.1.6)

This pdf is referred to as either the Laplace or the double exponential distribution.
The log of the likelihood simplifies to

n
1(6) = —nlog 2 — Z |z; — 8].

i=1

The first partial derivative is
I(6) = ngn(xi - 0), (6.1.7)
=1

where sgn(t) = 1,0, or — 1 depending on whether ¢t > 0,t =0, or t < 0. Note that
we have used %|t| = sgn(t) which is true unless ¢t = 0. Setting the equation (6.1.7)
to 0, the solution for 6 is med{z;,zs,...,Zn}, because the median will make half
the terms of the sum in expression (6.1.7) nonpositive and half nonnegative. Recall
that we denote the median of a sample by @2 (the second quartile of the sample).
Hence & = Q, is the mle of § for the Laplace pdf (6.1.6). m
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Example 6.1.4 (Logistic Distribution). Let X3,..., X, be iid with density

exp{—(z — )}
(14 exp{—(z —)})?’

The log of the likelihood simplifies to

f(z;0) =

—00 < T < 00, —00 < 8§ < 0. (6.1.8)

= Zlog f(x:;0) = nb —nT — 2210g(1 + exp{—(z; — 8)}).

i=1 i=1

Using this, the first partial derivative is

exP{ :L'z - 0)}
Z 1+ exp{—(z; — 6)} (6.1.9)

Setting this equation to 0 and rearranging terms results in the equation,

~ exp{—(z; -6} _n
; T+expl—(@i-0)] 2 (6.1.10)

Although this does not simplify, we can show that equation (6.1.10) has a unique
solution. The derivative of the left side of equation (6.1.10) simplifies to,

exp{—(z; —6)} ~ exp{—(z; — 0)}
a/a")z T expl—(zi— O} ~ 2 L+ exp{—(wi = O ~

Thus the left side of equation (6.1.10) is a strictly increasing function of 8. Finally,
the left side of (6.1.10) approachs 0 as # — —oo and approachs n as § — co. Thus,
the equation (6.1.10) has a unique solution. Also the second derivative of (f) is
strictly negative for all 4; so the solution is a maximum.

Having shown that the mle exists and is unique, we can use a numerical method
to obtain the solution. In this case, Newton’s procedure is useful. We discuss this
in general in the next section at which time we will reconsider this example. m

Even though we did not get the mle in closed form in the last example, in all
three of these examples standard differential calculus methods led us to the solution.
For the next example, the support of the random variable involves # and, hence,
does not satisfy the regularity conditions. For such cases, differential calculus may
not be useful.

Example 6.1.5 (Uniform Distribution). Let X3, ..., X}, beiid with the uniform
(0,6) density, ie., f(x) = 1/0 for 0 < = < 8, 0 elsewhere. Because 8 is in the
support, differentiation is not helpful here. The likelihood function can be written
as

L(#) = 6 "I(max{z;},0); for all 8 >0,

where I(a,b) is 1 or 0 if a < b or a > b, respectively. This function is a decreasing
function of 8 for all 8 > max{z;} and is 0, otherwise, (please sketch it). Hence, the
maximum occurs at the smallest value of §; i.e., the mle is § = max{X;}. m
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Example 6.1.6. In Example 6.1.1, we discussed the mle of the probability of
success 6 for a random sample X1, X, ..., X, from the Bernoulli distribution with
pmf

[ 6r1-6)'" z=0,1
p() = { 0 elsewhere,

where 0 < @ < 1. Recall that the mle is X, the proportion of sample successes.
Now suppose that we know in advance that, instead of 0 < 8§ < 1, @ is restricted
by the inequalities 0 < 8 < 1/3. If the observations were such that T > 1/3, then

T would not be a satisfactory estimate. Since %1 > 0, provided § < T, under the
restriction 0 < < 1/3, we can maximize {(f) by taking 6 = min {Z,1}. m

The following is an appealing property of maximum likelihood estimates.

Theorem 6.1.2. Let X1,...,X, be iid with the pdf f(x;6),0 € Q. For a specified
function g, let 1 = g(0) be a parameter of interest. Suppose 0 is the mle of 6. Then

g(g) is the mle of n = g(6).

Proof: First suppose g is a one-to-one function. The likelihood of interest is L(g(9)),
but because g is one-to-one,

max L(g(6)) = max L{y) = max L(g™*(n))-

But the maximum occurs when g~1(1) = ; i.e., take 7 = g(a)
Suppose g is not one-to-one. For each 7 in the range of g, define the set (preim-

age),
g M) =1{6: g(6) =n}.

The maximum occurs at 8 and the domain of g is 2 which covers 9. Hence, 9 is
in one of these preimages and, in fact, it can only be in one preimage. Hence to
maximize L(7), choose 7 so that g~!(7) is that unique preimage containing 6. Then

n=g(0). m

In Example 6.1.5, it might be of interest to estimate Var(X) = #2/12. Hence
by Theorem 6.1.2, the mle is max{X;}2/12. Next, consider Example 6.1.1, where
X1,...,X, are iid Bernoulli random variables with probability of success p. As
shown in the example, 7 = X is the mle of p. Recall that in the large sample
confidence interval for p, (5.4.8), an estimate of 1/p(1 — p) is required. By Theorem
6.1.2, the mle of this quantity is 1/p(1 — D).

We close this section by showing that maximum likelihood estimators, under
regularity conditions, are consistent estimators. Recall that X’ = (X1,...,X,).

Theorem 6.1.3. Assume that X1,..., X, satisfy the regularity conditions (R0) -
(R2), where g is the true parameter, and further that f(x;0) is differentiable with
respect to 8 in 2. Then the likelihood equation,

)
=50 =0
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or equivalently
=1(0)=0

has a solution 5,, such that §n LA 0.

Proof: Because 6 is an interior point in ©, (6 — a,6p + a) C Q, for some a > 0.
Define S,, to be the event

Sn={X: 1(60;X) > (00 — a; X)} N {X : I(6p; X) > (60 + a; X)}.

By Theorem 6.1.1, P(S,) — 1. So we can restrict attention to the event S,,. But on

Sn, I(8) has a local maximum say, 8, such that 6o —a < 8, < 6p+a and I'(8,) =0
That is,

S C {x  18(X) — 80| < a} N {x U (Ba(X)) = o} .

Therefore,
1= lim P(S,) < Tm P [{x n(X) — 60| < a} {x 1(8(X)) = 0}]

see Remark 4.3.3 for discussion on lim. It follows that for the sequence of solutions
0,,, P[|0 —00' < a] — 1.

The only contentious point in the proof is that the sequence of solutions might
depend on a. But we can always choose a solution “closest” to fy in the following
way. For each n, the set of all solutions in the interval is bounded, hence the infimum
over solutions closest to 0y exists. m

Note that this theorem is vague in that it discusses solutions of the equation.
If, however, we know that the mle is the unique solution of the equation '(8) = 0,
then it is consistent. We state this as a corollary:

Corollary 6.1.1. Assume that X, ..., X, satisfy the regularity conditions (R0) -
(R2), where 0y is the true parameter, a,nd that f(x;6) is differentiable with respect
to 0 in §). Suppose the likelihood equation has the unique solution 0 Then 0 s a
consistent estimator of 6o.

EXERCISES

6.1.1. Let X;, Xa,..., X, be a random sample from a N (6, 02) distribution, —oo <
6 < oo with o2 known. Determine the mle of 6.

6.1.2. Let X;, Xa,...,X, be arandom sample from a I'(ae = 3, 8 = ) distribution,
0 < § < co. Determine the mle of 6.

6.1.3. Let X1, Xo,...,X, represent a random sample from each of the distributions
having the following pdfs or pmfs:
(a) f(z;0) = 6%e7%/a!, z = 0,1,2,..., 0 < @ < oo, zero elsewhere, where
f(0;0) =



