Name:

Question:	1	2	3	4	Total
Points:	30	10	40	20	100
Score:					

Question:	1	2	3	4	Total
Bonus Points:	10	10	0	0	20
Score:					

Question 1.. 30 point
A matrix U is called unitary iff

$$
U U^{*}=I
$$

where U^{*} denotes the transpose of U and I is the identity matrix. A matrix A is called antisymmetric iff

$$
A^{*}=-A
$$

(a) (10 points) Show that if U is unitary then

$$
\operatorname{det} U= \pm 1
$$

(b) (10 points) Show that if A is antisymmetric than $U=\exp (A)$ is unitary.
(c) (10 points) Show that if A is antisymmetric and $P(t)$ is a solution of

$$
\dot{P}(t)=A P(t)
$$

with $P(0)=I$ then $P(t)$ is unitary for every t.
(d) (10 points (bonus)) Suppose now that $P(t)$ is a solution of the equation

$$
\dot{P}(t)=A(t) P(t)
$$

with $P(0)=I$ and $A(t)$ antisymmetric for every t. Show that $P(t)$ is unitary for every t. (Hint: consider $O(t)=P(t) P(t)^{*}$. Show that, if $P(t)$ is unitary than $\dot{O}(t)=0$.)

Consider the systems of equations

$$
\left\{\begin{array}{l}
\dot{x_{1}}=a x_{1}+x_{2}+x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) \tag{1}\\
\dot{x_{2}}=-x_{1}+a x_{2}+x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)
\end{array}\right.
$$

with $a \leq 0$, and

$$
\left\{\begin{array}{l}
\dot{x_{1}}=b x_{1}+x_{2} \tag{2}\\
\dot{x_{2}}=-x_{1}+b x_{2}
\end{array}\right.
$$

with $b \leq 0$.
(a) (10 points) For which values of a and b are eq.(1) and eq.(2) locally conjugated around the point $X^{*}=(0,0)$? (Hint: linearize eq.(1) and then use the Theorems at page 168 and 66 of the book.)
(b) (10 points (bonus)) Is the conjugacy global? (Hint: eq.(1) has a periodic orbit around 0 for $a \leq 0$.)

Consider the differential equations:

$$
\left\{\begin{array}{l}
\dot{x_{1}}=1-\frac{x_{1}^{2}}{x_{1}^{2}+x_{2}^{2}}-B x_{2} \tag{3}\\
\dot{x_{2}}=-\frac{x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}}+B x_{1}
\end{array}\right.
$$

where B is a parameter.
(a) (10 points) Calling

$$
E(X)=x_{1}^{2}+x_{2}^{2}
$$

show that if $X(t)=\left(x_{1}(t), x_{2}(t)\right)$ is a solution of eq.(3) than $E(X(t))$ is constant in time, i.e. $\dot{E}(X(t))=0$.
(b) (10 points) write $\left(x_{1}, x_{2}\right)=(r \cos \theta, r \sin \theta)$ and rewrite eq.(3) as a system of equations for r and θ. Observe that, from point (a) the equation for r is simply $\dot{r}=0$.
(c) (10 points) Consider the equation for θ with B as a parameter and $r=1$. Find the fixed points as a function of B. Draw the bifurcation diagram and describe the bifurcations you encounter as B varies.

Question 4... 20 point Consider the differential equation

$$
\dot{X}=\left(\begin{array}{cc}
1+a & a \\
-a & 1-a
\end{array}\right) X
$$

Write the general solution for every value of a.

