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1) The equation governing the temperature u(x, t) inside a rod is:


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


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∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
0 ≤ x ≤ 1

∂u(0, t)

∂x
= ru(0, t)

∂u(1, t)

∂x
= r (T − u(1, t))

u(x, 0) = x

a) write and solve the equation for the steady state v(x).

The equation for the steady state is:
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∂2u(x, t)

∂x2
= 0

∂v(0)

∂x
= rv(0)

∂v(1)

∂x
= r (T − v(1))

The general solution is still v(x) = ax+b. The first b.c. tells me that a = rb while
the second tells me that a = r(T − a− b) or, using the other, a = r(T − a− a/r)
from which we get

a =
rT

2 + r
b =

T

2 + r

b) write the equation for the difference w(x, t) = u(x, t) − v(x).

The equation for w is the homogeneous version of that for u so that:
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∂w(x, t)

∂t
=

∂2w(x, t)

∂x2
0 ≤ x ≤ 1

∂w(0, t)

∂x
= rw(0, t)

∂w(1, t)

∂x
= −rw(1, t)

u(x, 0) =

(

1 −
rT

2 + r

)

x −
T

2 + r



Page 2 of 6

c) use separation of variable to reduce the problem to a Sturm-Luiville problem.
Find the eigenvalues and eigenfunctions. Explain why you can expand in eigen-
functions. Write the general solution for w(x, t) and an expression for the coeffi-
cient in term of w(x, 0).

Writing w(x, t) = T (t)s(x) we get the equation




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


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∂T (t)

∂t
= µT (t)

∂2s(x)

∂x2
= µs(x)

s′(0) − rs(0) = 0

s′(1) + rs(1) = 0

Observe that the Theorem on section 2.8 tells you that all µ are non negative
so that I can write µ = −λ2. The general solution of the equation for s(x) is
s(x) = a cos(λx) + b sin(λx) so that s′(x) = −aλ sin(λx) + bλ cos(λx). The first
b.c. tells me ra = λb and the second tells me

λb cos(λ) + rb sin(λ) =
λ2

r
b sin(λ) − bλ cos(λx)

that gives

tan(λ) =
2rλ

λ2 − r2

Observe that

lim
λ→∞

2rλ

λ2 − r2
= 0

so that we have infinitely many solution λn and lim
n→∞

λn = nπ. Finally we get

sn(x) = λn cos(λnx) + r sin(λnx)

From the general theory we know that the sn(x) are orthogonal because they are
the eigenvalue of a regular Sturm-Luoiville problem. Setting:

cn =

∫ 1

0

s2
n(x)dx

We have, for every function f(x), that

f(x) =
∑

ansn(x)

where

an =

∫ 1

0

f(x)sn(x)dx.
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So we obtain that the general solution is

u(x, t) =
∞
∑

n=1

ane−λ2

n
tsn(x)

and setting

an =
1

cn

∫ 1

0

[(

1 −
rT

2 + r

)

x −
T

2 + r

]

sn(x)dx

we obtain a solution for our problem.
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e) Give an estimate from above and below of the first eigenvalue. How long do you
have to wait to be sure that |w(x, t)| ≤ 10−3. Use only the series truncated at
the first term but observe that you need an estimate of the first coefficient.

Observe that the function

g(λ) =
2rλ

λ2 − r2

is negative for for λ ≤ r and positive after. Moreover lim
λ→r−

= −∞ and lim
λ→r+

=

+∞. Finally g(0) = 0. This implies that if 0 < r < π/2 than r < λ1 < π/2,
otherwise π/2 < λ1 < π. Writing the truncated solution we have

w(x, t) ' a1e
−λ2

1
ts1(x)

Observe that |s1(x)| ≤ λ1 + r so that we have to find t such that

|a1|e
−λ2

1
t(λ1 + r) ≤ 10−3

that is

t >
ln (1000(r + λ1)|a1|)

λ1
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f) Bonus: write the solution of the problem. Remember that

∫

x cos(λx)dx =
cos(λx)

λ2
+

x sin(λx)

λ
∫

x sin(λx)dx =
sin(λx)

λ2
−

x cos(λx)

λ

We have to compute

∫ 1

0

sn(x)dx =

∫ 1

0

(λn cos(λnx) + r sin(λnx)) dx = sin(λn) − r
cos(λn) − 1

λn

= dn

and

∫ 1

0

xsn(x)dx =

∫ 1

0

(λnx cos(λnx) + rx sin(λnx)) dx =

=

(

cos(λnx)

λn

+ x sin(λnx) +
r sin(λnx)

λ2
n

−
rx cos(λnx)

λn

)

∣

∣

∣

∣

∣

1

0

=

=
1 − r

λn

cos λn +

(

1 +
r

λ2
n

)

sin λn −
1

λn

= en

Finally we have

cn =

∫ 1

0

(

λ2
n − r2

2
cos(2λnx) +

λ2
n + r2

2
+ rλn sin(2λnx)

)

dx =

=
r2λ2

n − 1

2λn

sin(2λn) − r (cos(2λn) − 1) +
r2λ2

n + 1

2

so that

an =

(

1 −
rT

2 + r

)

en

cn

−
T

2 + r

dn

cn
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2) Let f(x) a continuous and differentiable function defined for all x. Assume that

|f(x)| ≤ Ce−λ|x|

with C and λ positive. Finally let

f̂(k) =
1

2π

∫ ∞

−∞

eikxf(x)dx. (1)

Consider now the function

F (x) =

∞
∑

n=−∞

f(x + nL)

with L > 0.

a) Show that F (x) exists and it is periodic of period L.

Observe that

F (x + L) =

∞
∑

n=−∞

f(x + L + nL) =

=
∞
∑

n=−∞

f(x + (n + 1)L) =
∞
∑

m=−∞

f(x + mL) = F (x)

so that F (x) is periodic of period L. Let now 0 < x < L. We have

F (x) =
∞
∑

n=−∞

f(x + nL) ≤ C
∞
∑

n=−∞

e−λ|x+nL| ≤ Ceλx

∞
∑

n=−∞

e−λ|n|L < +∞

where we used that |x + nL| ≥ |nL| − |x| so that

e−λ|x+nL| ≤ eλxe−λ|nL|.
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b) Let

F (x) =
∑

cnei 2nπ

L
x.

Find the coefficients cn. (Hint: write an expression for cn as a sum of integrals
and than change variable y = x + nL and ...)

cm =
1

L

∫ L

0

e−i 2nπ

L
xF (x)dx =

1

L

∞
∑

n=−∞

∫ L

0

e−i 2nπ

L
xf(x + nL)dx =

=
1

L

∞
∑

n=−∞

∫ (n+1)L

nL

e−i 2nπ

L
(y−nL)f(y)dy =

1

L

∫ ∞

−∞

e−i 2nπ

L
yf(y)dy =

=f̂

(

−
2nπ

L

)


