
1) The equation governing the temperature u(x, t) inside a rod is:
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0 ≤ x ≤ 1
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∂x
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∂u(1, t)

∂x
= r (T − u(1, t))

u(x, 0) = Tx

a) write and solve the equation for the steady state v(x).

The steady state equation is:
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∂2v(x)

∂x2
= 0 0 ≤ x ≤ 1

∂v(0)

∂x
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∂v(1)

∂x
= r (T − u(1))

The general solution is v(x) = ax + b. The first boundary condition tells that
a = 0. The second gives T = b.

b) write the equation for the difference w(x, t) = u(x, t) − v(x).

Writing u(x, t) = v(x) + w(x, t) you get the equation:
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∂x2
0 ≤ x ≤ 1

∂w(0, t)

∂x
= 0

∂w(1, t)

∂x
= −ru(1, t)

u(x, 0) = T (x − 1)



c) use separation of variable to reduce the problem to a Sturm-Luiville problem.
Find the eigenvalues and eigenfunctions. Explain why you can expand in eigen-
functions. Write the general solution for w(x, t) and an expression for the coeffi-
cient in term of w(x, 0).

Writing w(x, t) = T (t)s(x) we get the equations:

Ṫ (t) = µT (t)

and
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∂2s(x)
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= µs(x) 0 ≤ x ≤ 1

∂s(0)

∂x
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∂x
= −ru(1)

The equation for s tells us that µ = −λ2 and

s(x) = a cos(λx) + b sin(λx)

The first boundary condition implies that b = 0, so that we can take a = 1. The
other boundary condition reads:

−λ sin(λ) = −r cos(λ)

or
tan(λ) =

r

λ

This equation has infinitely many solution λn > 0. They are the eigenvalue with
eigenvector sn(x) = cos(λnx). The general solution is then:

w(x, t) =

∞
∑

n=1

ane−λ
2

n
t cos(λnx)

where

an =

∫ 1

0
cos(λnx)w(x, 0)dx
∫ 1

0
cos2(λnx)dx

.



d) write the solution of the problem. Remember that

∫

x cos(λx)dx =
cos(λx)

λ2
+

x sin(λx)

λ
∫

cos2(λx)dx =
x

2
+

sin(2λx)

4λ

NB: there was a typo in the sign of the second term on the right in the second
equation above.

∫ 1

0

cos2(λnx)dx =

(

x

2
+

sin(2λnx)

4λn

)
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∣

1

0

=
1

2
+

sin(2λn)

4λn

=
2λn + sin(2λn)

4λn

∫ 1

0

cos(λnx)w(x, 0)dx = T

(
∫ 1

0

x cos(λnx)dx −

∫ 1

0

cos(λnx)dx

)

=

= T

(

cos(λn) − 1

λ2
n

)

so that

v(x, t) = T +
∞
∑

n=1

ane−λ
2

n
t cos(λnx)

with

an =
4T

λn

cos(λn) − 1

2λn + sin(2λn)



e) Consider the equation:
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∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
+ k(T − u(x, t)) 0 ≤ x ≤ 1

∂u(0, t)

∂x
= 0

∂u(1, t)

∂x
= r (T − u(1, t))

u(x, 0) = Tx

Find the solution of this equation. Observe that after comnputing the steady
state you can just use the results in points a), b) and c). What is the only
difference with the previous case?

It is easy to check that v(x) = T is still the solution of the steady state equation.
Separation of variables gives the new equation

s(x)

∂x2
− ks(x) = µs(x)

with the same boundary conditions of point c). Calling ρ = µ + k we find that
there are infinitely many solution for ρ and that ρn = −λ2

n
where λn satisfies

tan(λn) =
r

λn

.

so that we have infinitely many µn with µn = −λ2
n − k. The eigenfunction

associated with µn is still sn(x) = cos(λnx). Finally we have

v(x, t) = T +
∞
∑

n=1

ane−(λ2

n
+k)t cos(λnx)

where the an are the one of point d). We can observe that the approach to the
steady state is faster due to the presence of the term −kt in the exponent.


