
Chapter 2

Linear and Perturbed Linear Systems

One of the important topics in differential equations is concerned with the lo-
cal theory; that is, the behavior of solutions near a given solution ϕt(ξ). If we let
x = ϕt + y, then the discussion reduces to determining properties of solutions of a
nonautonomous differential equation near the equilibrium solution y = 0. As a first
step, it is natural to replace the vector field by the first term in the Taylor series near
0. This leads to the study of linear differential equations, which we do in this chapter.
In addition to giving basic properties of solutions of linear equations, we investigate,
in some elementary situations, the effects of perturbations on stability.

2.1. General properties.

If A ∈ C0(lR, lRd×d) (or A ∈ C0(lR,Cl d×d)) is a d×d matrix function, we consider
the linear equation

(1.1) ẋ = A(t)x .

For any (τ, ξ) ∈ lR × lRd, Theorem 1.3.1 implies that there is a unique solution
x(t, τ, ξ) through (τ, ξ) which is continuous in its arguments and Exercise 1.4.4 en-
sures that this solution exists for all t ∈ (−∞, ∞). Also, from the uniqueness and
the fact that the vector field in (1.1) is linear in x, it follows, as in the discussion
of linear autonomous equations in Section 1.5, that there is a d × d matrix function
X(t, τ), X(τ, τ) = I, the identity, such that

(1.2) x(t, τ, ξ) = X(t, τ)ξ .

Furthermore, each column of the matrix X(t, τ) is a solution of (1.1).
This leads to the following definition. A d × d matrix function X(t) is said to

be a matrix solution of (1.1) if each column of the matrix is a solution of (1.1). We
write this as Ẋ = A(t)X.

Proposition 1.1. If X(t) is a d×d matrix solution of (1.1), then either det X(t) 6= 0
for all t or det X(t) = 0 for all t.

Proof. If there is a t0 such that det X(t0) = 0, then there is a nonzero vector v ∈ lRd

such that X(t0)v = 0. If ψ(t) = X(t)v, then ψ(t) is a solution of (1.1) with ψ(t0) = 0.
Since 0 is a solution of (1.1), uniqueness of the solutions of the initial value problem
imply that ψ(t) = 0 for all t and so det X(t) = 0 for all t.

A d × d matrix solution X(t) of (1.1) is called a fundamental matrix solution if
det X(t) 6= 0 for all t. A d×d matrix solution X(t) of (1.1) is called a principal matrix
solution at τ if X(τ) = I. The matrix X(t, τ) in (1.2) is a principal matrix solution
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of (1.1) at τ . Furthermore, if X(t) is a fundamental matrix solution of (1.1), then
X(t)X−1(τ) is a principal matrix solution at τ and

(1.3) X(t, τ) = X(t)X−1(τ)

for all t, τ.
A set { x1, x2, . . . , xd } of vectors in lRd is said to be linearly independent if

Σd
j=1

cjx
j for any scalars cj implies that cj = 0 for all j. This set of vectors is said to

be linearly dependent if they are not linearly independent.

Exercise 1.1. Prove that the set { x1, x2, . . . , xd } of vectors in lRd are linearly
independent if and only if det [x1, x2, . . . , xd] 6= 0.

In this terminology, we can say that X(t) is a fundamental matrix solution of
(1.1) if and only if the columns of the matrix X(0) are linearly independent. There-
fore, the determination of the behavior of solutions of the linear system is a finite
dimensional problem. We select d linearly independent initial values at time 0, obtain
the corresponding solutions of (1.1) and use (1.3) and (1.2).

Let A∗ be the conjugate transpose of a matrix A. The adjoint equation of (1.1)
is defined to be

(1.4) ẏ = −A∗(t)y .

Proposition 1.2. If x(t) is a solution of (1.1) and y(t) is a solution of (1.4), then
y(t)∗x(t) is a constant for all t.

Proof. By differentiating the expression y(t)∗x(t) with respect to t, we obtain
ẏ(t)∗x(t) + y(t)∗ẋ(t) = 0 and thus y(t)∗x(t) is a constant.

Proposition 1.3. If X(t) is a fundamental matrix solution of (1.1), then Y (t) =
[X(t)−1]∗ is a fundamental matrix solution of (1.4).

Proof. If Y (t) is a matrix solution of (1.4) with Y (0) = [X(0)−1]∗, then Proposition
1.2 implies that Y (t)∗X(t) is a constant for all t. Since this constant is the identity
matrix, we have the conclusion that Y (t) = [X(t)−1]∗.
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