1.4. Differential inequalities.

Let D, denote the right hand derivative of a function. If w(¢, u) is a scalar
function of the scalars ¢, u in some open connected set {2, we say that a function
v(t), a <t <b,is a solution of the differential inequality

(4.1) D, v(t) < wl(t, v(t))

on [a, b) if v(t) is continuous and has a right hand derivative on [a, b) that satisfies
(4.1).

Theorem 4.1. Let w € C"(Q2, R), r > 1, where Q C R? is an open connected set.
If u(t) is a solution of the equation

(4.2) = w(t, u)

on |a, b] and v is a solution of (4.1) on [a, b) with v(a) < u(a), then v(t) < u(t) for
t € la,b).

Proof. For any positive integer n, let u, (t) designate the solution of the equation

1
U =w(t, u)+ -
with u,(a) = u(a). From Corollary 3.1 and Exercise 3.5, there is an ng such that
Uy, for n > ng, is defined on [a, b] and wu,(t) — w(t) uniformly on [a, b] as n — oc.
Suppose that v(t) is not < u(t) for a <t < b. Then there exist t1,a < t; < b, such that
v(t1) > u(ty). Since u,(t) — u(t) uniformly on [a, b] as n — oo, there is an integer n
such that v(¢1) > u,(t1). Thus, there is a to < t1 in (a, b) such that v(¢) > u,(t) on
to <t <ty, v(tz) = un(tz). This implies that

D, v(tz) > un(tz) = w(ta, uy(t2)) + %
= (.d(tg, ’U(tg)) —+ 1

> u}(tg, U(tz)) ,

which is a contradiction. Consequently, v(t) < wu(t) for a < ¢t < b. This proves the
theorem.

Corollary 4.1. Suppose that w(t, u) satisfies the conditions of Theorem 4.1 and, in
addition, is nondecreasing in u. If u is a solution of (4.2) on [a, b] and v(t) is continuous
and satisfies the integral inequality

t

(4.3) v(t) < v, —|—/ w(s,v(s))ds, a<t<b, v, <u(a),
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then v(t) < wu(t),a <t <b.

Proof. If V(t) is the right hand side of (4.3), then v(t) <
w(t, V(t)), V(a) = vy < u(a). Theorem 4.1 implies that V(t) <
Since V/(t) is continuous on [a, b], we have V() < u(t) fora <t <
corollary.

V(t) and V() <
u(t) for a <t < b.
b, which proves the

Remark 4.1. If it not assumed that the function w(¢, u) in Corollary 4.1 is nonde-
creasing in u, then the conclusion in the corollary may not be true. The following
example was supplied by X.-B. Lin. If w(t, u) = —u and u(0) = —1, then u(t) = —e~*.
If n > 2 is an integer, then v(t) = £ —1 for ¢ < n and v(¢) = 0 for t > n is a solution
of the integral inequality (4.3) on [0, c0).

Corollary 4.2. (The Gronwall Inequality) If « is a real constant, 3(t) > 0 and ¢(t)
are continuous real functions for a <t < b which satisfy

t
t)§a+/ B(s)p(s)ds, a<t<b,

then

o) < aeda POI G <y

Proof. Apply Corollary 4.2 with v, = a, w(t, u) = ((t)u.

Corollary 4.3. (Generalized Gronwall Inequality) If B(t) > 0, a(t) and ¢(t) are
continuous real functions for a <t < b which satisfy

t
—|—/ B(s)p(s)ds, a<t<b,

/ B(s Josde g < <p)

then

If, in addition, &(t) is continuous and & > 0, then

o(t) < alt)els P4 i<y

Exercise 4.1. Prove Corollary 4.3. Let R(t f B(s)p(s) ds, obtain a differential
inequality for R and find a solution of the mequahty If a( ) is continuous, then
integrate by parts.

Exercise 4.2. Consider the linear system of differential equations
= A(t)x + h(t),
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where the d x d matrix A and the d-vector h are continuous on an interval I, finite
or infinite. Prove that the solution of the initial value problem exists on I. Hint: Fix
a closed interval I C I, take 7 € I, £ € R® and let v(t) = |=(t)|. Obtain an integral
inequality for v and use the generalized Gronwall inequality.

Differential inequalities are very convenient for obtaining bounds on the solutions
of vector systems @ = f(t, ). The inequality is obtained by differentiating scalar
valued functions V (¢, =) along the solutions.

Exercise 4.3. For z, y € R, let -y be the inner product of z and y. Suppose that
feC"(RxRY RY), r > 1, and there exists a continuous function A € C(IR, R) such
that x - f(t,z) < —A(t)x -« for all t. For any 7 € R, £ € R?, show that the solution
of the initial value problem exists for all ¢ and satisfies the inequality

@) <e LA i

Discuss the behavior of the solutions for A(t) > 0. What happens if fjoo A(s)ds =
+00? Hint: Let V(z) = x - x and find a differential inequality for V(x(¢)) along the
solution x(t).

Exercise 4.4. Generalize the previous exercise to the case where x - Bf(t, ) <
A(t)z - © where B is a positive definite symmetric matrix. Hint: Let V(X) =z - Bx.

Exercise 4.5. Suppose that |f(t,z)| < A(t)|z| for all ¢, x and fjoo A(s)ds < +o0.
Show that each solution of # = f(¢, ) approaches a constant as ¢t — oc. If, in addition,

[f @t z) = (& y)| < M)z -y

for all ¢, x, y, show that there is a one-to-one correspondence between the initial
positions and the limit values of the solution. Interpret the results for the linear
equation & = A(t)x where the norm of the d x d matrix A(t) is bounded by A(t).

Exercise 4.6. Suppose that a(t) is a continuous scalar function, f0+oo la(s)| ds < oo.
As in the previous exercise, show that the solutions of the equation & = —x + a(t)x
have the form z(t) = e 'y(t), where y(t) — a constant as ¢ — oo and there is a
one-to-one correspondence between the limits of the solutions and the initial position.
Notice that you have shown that, for any constant ¢, there is a function g(¢t) — 0 as
t — oo such that x(t) = e *(c+ g(t)) is a solution of the differential equation. Hint:
Find the differential equation for y.

Exercise 4.7. Consider the equation ©; = z9, 9 = —x1 + a(t)z1, where a is the
same function as in the previous exercise. Show that the solutions have the form

x1(t) = y1(t) cos t + yo(t) sin t
xo(t) = —y1(t) sin t 4 ya(t) cos ¢
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where y(t) = (y1(t),y2(t)) — a constant as t — oo and there is a one-to-one correspon-
dence between the limits of the solutions and the initial position. Comment about

how this result relates the solutions to the solutions of the homogeneous equation
jfl = T2, jfg = —1’1?






