polynomiais. 8. Let G be a region and let f and g be analytic functions on G such that f(z)g(z) = 0 for all z in G. Show that either $f \equiv 0$ or $g \equiv 0$. 9. Let $U: \mathbb{C} \to \mathbb{R}$ be a harmonic function such that $U(z) \ge 0$ for all z in \mathbb{C} ; prove that U is constant.

10. Show that if f and g are analytic functions on a region G such that f g is

integer k there is a point $u \neq \{\gamma\}$ with $h(\gamma, u) = k$.

that $\int_{\gamma} \frac{p'(z)}{p(z)} dz = 2\pi i n$.

3. Let p(z) be a polynomial of degree n and let R > 0 be sufficiently large so that p never vanishes in $\{z : |z| \ge R\}$. If $\gamma(t) = Re^{it}$, $0 \le t \le 2\pi$, show

Suppose $f: G \rightarrow \mathbb{C}$ is analytic and define $\varphi: G \times G \rightarrow \mathbb{C}$ by $\varphi(z, w) = [f(z) - f(w)](z - w)^{-1}$ if $z \neq w$ and $\varphi(z, z) = f'(z)$. Prove that φ is continuous and for each fixed $w, z \rightarrow \varphi(z, w)$ is analytic.

2. Give the details of the proof of Theorem 5.6.

3. Let $B_{\pm} = \overline{B}(\pm 1; \frac{1}{2})$, $G = B(0; 3) - (B_{+} \cup B_{-})$. Let $\gamma_{1}, \gamma_{2}, \gamma_{3}$ be curves whose traces are |z - 1| = 1, |z + 1| = 1, and |z| = 2, respectively. Give γ_{1}, γ_{2} , and γ_{3} orientations such that $n(\gamma_{1}; w) + n(\gamma_{2}; w) + n(\gamma_{3}; w) = 0$ for all w in $\mathbb{C} - G$.

4. Show that the Integral Formula follows from Cauchy's Theorem.
5. Let γ be a closed rectifiable curve in C and a ∉ {γ}. Show that for n≥2

 $\int_{\gamma} (z-a)^{-n} dz = 0.$ 6. Let f be analytic on D = B(0; 1) and suppose $|f(z)| \le 1$ for |z| < 1. Show $|f'(0)| \le 1$.

Let $\gamma(t) = 1 + e^{it}$ for $0 \le t \le 2\pi$. Find $\int_{\gamma} \left(\frac{z}{z-1}\right)^n dz$ for all positive integers n.

8. Let G be a region and suppose $f_n: G \to \mathbb{C}$ is analytic for each $n \ge 1$. Suppose that $\{f_n\}$ converges uniformly to a function $f: G \to \mathbb{C}$ Show that f is analytic.

9. Show that if $f: \mathbb{C} \to \mathbb{C}$ is a continuous function such that f is analytic off [-1,1] then f is an entire function.

Use Cauchy's Integral Formula to prove the Cayley-Hamilton Theorem: If A is an $n \times n$ matrix over C and $f(z) = \det(z - A)$ is the characteristic polynomial of A then f(A) = 0. (This exercise was taken from a paper

by C. A. McCarthy, Amer. Math. Monthly, 82 (1975), 390-391).

1) Let G be a region and let σ_1, σ_2 : $[0,1] \to G$ be the constant curves $\sigma_1(t) \equiv a, \sigma_2(t) \equiv b$. Show that if γ is a closed rectifiable curve in G and $\gamma \sim \sigma_1$ then $\gamma \sim \sigma_2$. (Hint: connect a and b by a curve.)

2. Show that if we remove the requirement " $\Gamma(0, t) = \Gamma(1, t)$ for all t"

from Definition 6.1 then the curve $\Gamma(t) = \sigma^{2\pi it}$ 0 < t < 1 is homotonic to

from Definition 6.1 then the curve $\gamma_0(t) = e^{2\pi i t}$, $0 \le t \le 1$, is homotopic to the constant curve $\gamma_1(t) \equiv 1$ in the region $G = \mathbb{C} - \{0\}$. 3. Let $\mathscr{C} =$ all rectifiable curves in G joining a to b and show that Definition

6.11 gives an equivalence relation on \mathscr{C} .

4. Let $G = \mathbb{C} - \{0\}$ and show that every closed curve in G is homotopic to a closed curve whose trace is contained in $\{z: |z| = 1\}$.

6. Let
$$\gamma(\theta) = \theta e^{i\theta}$$
 for $0 \le \theta \le 2\pi$ and $\gamma(\theta) = 4\pi - \theta$ for $2\pi \le \theta \le 4\pi$. Evaluate $\int \frac{dz}{z^2 + \pi^2}$.

7. Let $f(z) = [(z - \frac{1}{2} - i) \cdot (z - 1 - \frac{3}{2}i) \cdot (z - 1 - \frac{i}{2}) \cdot (z - \frac{3}{2} - i)]^{-1}$ and let γ be the polygon [0, 2, 2 + 2i, 2i, 0]. Find $\int_{\gamma} f$. 8. Let $G = \mathbb{C} - \{a, b\}, \ a \neq b$, and let γ be the curve in the figure below.

(a) Show that $n(\gamma; a) = n(\gamma; b) = 0$. (b) Convince yourself that γ is not homotopic to zero. (Notice that the

word is "convince" and not "prove". Can you prove it?) Notice that this example shows that it is possible to have a closed curve γ in a region such that $n(\gamma; z) = 0$ for all z not in G without γ being homotopic to zero. That

is, the converse to Corollary 6.10 is false. 9. Let G be a region and let γ_0 and γ_1 be two closed smooth curves in G. Suppose $\gamma_0 \sim \gamma_1$ and Γ satisfies (6.2). Also suppose that $\gamma_t(s) = \Gamma(s,t)$ is smooth for each t. If $w \in \mathbb{C} - G$ define $h(t) = n(\gamma_t; w)$ and show that h:

[0, 1] $\rightarrow \mathbb{Z}$ is continuous. [10] Find all possible values of $\int_{\gamma} \frac{dz}{1+z^2}$ where γ is any closed rectifiable curve in \mathbb{C} not passing through $\pm i$. 3. Let f be analytic in B(a; R) and suppose that f(a) = 0. Show that a is a zero of multiplicity m iff $f^{(m-1)}(a) = \ldots = f(a) = 0$ and $f^{(m)}(a) \neq 0$.

4. Suppose that $f: G \to \mathbb{C}$ is analytic and one-one; show that $f'(z) \neq 0$ for any z in G.