MATH 6337 HOMEWORK #2

Work the following problems and hand in your solutions. You may work together with other people in the class, but you must each write up your solutions independently. A subset of these will be selected for grading. Write LEGIBLY on the FRONT side of the page only, and STAPLE your pages together.

1. Problem 1.3 #6. Complete the proof of Theorem 1.9.

2. Let Z be any subset of \mathbb{R} with Lebesgue measure zero. Show that the set $\{x^2 : x \in Z\}$ also has Lebesgue measure zero.

3. Let E_1 be a Lebesgue measurable subset of \mathbb{R}^m and let E_2 be a Lebesgue measurable subset of \mathbb{R}^n . Prove that $E_1 \times E_2 = \{(x, y) : x \in E_1, y \in E_2\}$ is a Lebesgue measurable subset of \mathbb{R}^{m+n} , and that $|E_1 \times E_2| = |E_1| |E_2|$.

Hint: First do the following special cases: a. both E_1 , E_2 are open, b. both E_1 , E_2 are G_{δ} -sets, c. either E_1 or E_2 has measure zero.

4. Show that there exist disjoint $E_1, E_2, \ldots \subseteq \mathbb{R}$ such that

$$\left|\bigcup_{k=1}^{\infty} E_k\right|_e < \sum_{k=1}^{\infty} |E_k|_e,$$

with strict inequality.

Hint: Let E be a nonmeasurable subset of [0, 1] whose rational translates are disjoint. Consider the translates of E by all rational $r \in (0, 1)$, and use the fact that exterior Lebesgue measure is translation-invariant.