MATH 6337 HOMEWORK #3

Work the following problems and hand in your solutions. You may work together with other people in the class, but you must each write up your solutions independently. A subset of these will be selected for grading. Write LEGIBLY on the FRONT side of the page only, and STAPLE your pages together.

1. Show that if μ^* is an outer measure on X and A, B are μ^* -measurable, then

$$\mu^*(A \cup B) + \mu^*(A \cap B) = \mu^*(A) + \mu^*(B).$$

2. Problem 1.4 #18. Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be an algebra, \mathcal{A}_{σ} the collection of countable unions of sets in \mathcal{A} , and $\mathcal{A}_{\sigma\delta}$ the collection of countable intersections of sets in \mathcal{A}_{σ} . Let μ_0 be a premeasure on \mathcal{A} and μ^* the induced outer measure.

a. For any $E \subseteq X$ and $\varepsilon > 0$ there exists $A \in \mathcal{A}_{\sigma}$ with $E \subseteq A$ and $\mu^*(A) \leq \mu^*(E) + \varepsilon$.

b. If $\mu^*(E) < \infty$, then E is μ^* -measurable if and only if there exists $B \in \mathcal{A}_{\sigma\delta}$ with $E \subseteq B$ and $\mu^*(B \setminus E) = 0$.

c. If μ_0 is σ -finite, the restriction $\mu^*(E) < \infty$ in part b is superfluous.

3. Problem 1.4 #19. Let μ^* be an outer measure on X induced from a finite premeasure μ_0 . If $E \subseteq X$, define the *inner measure* of E to be $\mu_*(E) = \mu_0(X) - \mu^*(E^{\mathbb{C}})$. Then E is μ^* -measurable if and only if $\mu^*(E) = \mu_*(E)$.

Hint: Apply Problem 1.4 #18 part a to both E and $E^{\rm C}$.