Work the following problems and hand in your solutions. You may work together with other people in the class, but you must each write up your solutions independently. A subset of these will be selected for grading. Write LEGIBLY on the FRONT side of the page only, and STAPLE your pages together.

1. Show that if μ^{*} is an outer measure on X and A, B are μ^{*}-measurable, then

$$
\mu^{*}(A \cup B)+\mu^{*}(A \cap B)=\mu^{*}(A)+\mu^{*}(B)
$$

2. Problem $1.4 \# 18$. Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be an algebra, \mathcal{A}_{σ} the collection of countable unions of sets in \mathcal{A}, and $\mathcal{A}_{\sigma \delta}$ the collection of countable intersections of sets in \mathcal{A}_{σ}. Let μ_{0} be a premeasure on \mathcal{A} and μ^{*} the induced outer measure.
a. For any $E \subseteq X$ and $\varepsilon>0$ there exists $A \in \mathcal{A}_{\sigma}$ with $E \subseteq A$ and $\mu^{*}(A) \leq \mu^{*}(E)+\varepsilon$.
b. If $\mu^{*}(E)<\infty$, then E is μ^{*}-measurable if and only if there exists $B \in \mathcal{A}_{\sigma \delta}$ with $E \subseteq B$ and $\mu^{*}(B \backslash E)=0$.
c. If μ_{0} is σ-finite, the restriction $\mu^{*}(E)<\infty$ in part b is superfluous.
3. Problem 1.4 \#19. Let μ^{*} be an outer measure on X induced from a finite premeasure μ_{0}. If $E \subseteq X$, define the inner measure of E to be $\mu_{*}(E)=\mu_{0}(X)-\mu^{*}\left(E^{\mathrm{C}}\right)$. Then E is μ^{*} measurable if and only if $\mu^{*}(E)=\mu_{*}(E)$.

Hint: Apply Problem 1.4 \#18 part a to both E and E^{C}.

