
Supplemental problems: §5.4

1. True or false. Answer true if the statement is always true. Otherwise, answer false.

a) If A is an invertible matrix and A is diagonalizable, then A−1 is diagonalizable.

b) A diagonalizable n× n matrix admits n linearly independent eigenvectors.

c) If A is diagonalizable, then A has n distinct eigenvalues.

Solution.

a) True. If A= PDP−1 and A is invertible then its eigenvalues are all nonzero, so
the diagonal entries of D are nonzero and thus D is invertible (pivot in every
diagonal position). Thus, A−1 = (PDP−1)−1 = (P−1)−1D−1P−1 = PD−1P−1.

b) True. By the Diagonalization Theorem, an n×n matrix is diagonalizable if and
only if it admits n linearly independent eigenvectors.

c) False. For instance,
�

1 0
0 1

�

is diagonal but has only one eigenvalue.

2. Give examples of 2×2 matrices with the following properties. Justify your answers.

a) A matrix A which is invertible and diagonalizable.

b) A matrix B which is invertible but not diagonalizable.

c) A matrix C which is not invertible but is diagonalizable.

d) A matrix D which is neither invertible nor diagonalizable.

Solution.

a) We can take any diagonal matrix with nonzero diagonal entries:

A=
�

1 0
0 1

�

.

b) A shear has only one eigenvalue λ = 1. The associated eigenspace is the x-
axis, so there do not exist two linearly independent eigenvectors. Hence it is
not diagonalizable.

B =
�

1 1
0 1

�

.

c) We can take any diagonal matrix with some zero diagonal entries:

C =
�

1 0
0 0

�

.

d) Such a matrix can only have the eigenvalue zero — otherwise it would have
two eigenvalues, hence be diagonalizable. Thus the characteristic polynomial
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2 SOLUTIONS

is f (λ) = λ2. Here is a matrix with trace and determinant zero, whose zero-
eigenspace (i.e., null space) is not all of R2:

D =
�

0 1
0 0

�

.

3. A=

 

2 3 1
3 2 4
0 0 −1

!

.

a) Find the eigenvalues of A, and find a basis for each eigenspace.

b) Is A diagonalizable? If your answer is yes, find a diagonal matrix D and an
invertible matrix C so that A = C DC−1. If your answer is no, justify why A is
not diagonalizable.

Solution.

a) We solve 0= det(A−λI).

0= det

 

2−λ 3 1
3 2−λ 4
0 0 −1−λ

!

= (−1−λ)(−1)6 det
�

2−λ 3
3 2−λ

�

= (−1−λ)((2−λ)2 − 9)

= (−1−λ)(λ2 − 4λ− 5) = −(λ+ 1)2(λ− 5).

So λ= −1 and λ= 5 are the eigenvalues.

λ= −1:
�

A+ I 0
�

=

 

3 3 1 0
3 3 4 0
0 0 0 0

!

R2=R2−R1−−−−−→

 

3 3 1 0
0 0 1 0
0 0 0 0

!

R1=R1−R2−−−−−−−→
then R1=R1/3

 

1 1 0 0
0 0 1 0
0 0 0 0

!

, with solution x1 = −x2, x2 = x2, x3 = 0. The (−1)-eigenspace

has basis

( −1
1
0

!)

.

λ= 5:

�

A− 5I 0
�

=

 −3 3 1 0
3 −3 4 0
0 0 −6 0

!

R2=R2+R1−−−−−−→
R3=R3/(−6)

 −3 3 1 0
0 0 5 0
0 0 1 0

!

R1=R1−R3, R2=R2−5R3−−−−−−−−−−−−−→
then R2↔R3, R1/(−3)

 

1 −1 0 0
0 0 1 0
0 0 0 0

!

,

with solution x1 = x2, x2 = x2, x3 = 0. The 5-eigenspace has basis

( 

1
1
0

!)

.

b) A is a 3× 3 matrix that only admits 2 linearly independent eigenvectors, so A
is not diagonalizable.
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4. Let A=

 

8 36 62
−6 −34 −62

3 18 33

!

.

The characteristic polynomial for A is (λ−2)2(λ−3). Decide if A is diagonalizable.
If it is, find an invertible matrix C and a diagonal matrix D such that A= C DC−1.

Solution.
For λ1 = 3, we row-reduce A− 3I :
 

5 36 62
−6 −37 −62
3 18 30

!

R1↔R3−−−−−−→
(New R1)/3

 

1 6 10
−6 −37 −62
5 36 62

!

R2=R2+6R1−−−−−−→
R3=R3−5R1

 

1 6 10
0 −1 −2
0 6 12

!

R3=R3+6R2−−−−−−−→
then R2=−R2

 

1 6 10
0 1 2
0 0 0

!

R1=R1−6R2−−−−−−→

 

1 0 −2
0 1 2
0 0 0

!

.

Therefore, the solutions to
�

A− 3I 0
�

are x1 = 2x3, x2 = −2x3, x3 = x3.
 

x1
x2
x3

!

=

 

2x3
−2x3

x3

!

= x3

 

2
−2
1

!

. The 3-eigenspace has basis

( 

2
−2
1

!)

.

For λ2 = 2, we row-reduce A− 2I :
 

6 36 62
−6 −36 −62
3 18 31

!

rref





1 6 31
3

0 0 0
0 0 0



 .

The solutions to
�

A− 2I 0
�

are x1 = −6x2 −
31
3 x3, x2 = x2, x3 = x3.

 

x1
x2
x3

!

=





−6x2 −
31
3 x3

x2
x3



= x2

 −6
1
0

!

+ x3





−31
3

0
1



 .

The 2-eigenspace has basis







 −6
1
0

!

,





−31
3

0
1











.

Therefore, A= C DC−1 where

C =





2 −6 −31
3

−2 1 0
1 0 1



 D =

 

3 0 0
0 2 0
0 0 2

!

.

Note that we arranged the eigenvectors in C in order of the eigenvalues 3, 2, 2, so
we had to put the diagonals of D in the same order.

5. Which of the following 3× 3 matrices are necessarily diagonalizable over the real
numbers? (Circle all that apply.)
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1. A matrix with three distinct real eigenvalues.

2. A matrix with one real eigenvalue.

3. A matrix with a real eigenvalue λ of algebraic multiplicity 2, such that the
λ-eigenspace has dimension 2.

4. A matrix with a real eigenvalue λ such that the λ-eigenspace has dimension
2.

Solution.
The matrices in 1 and 3 are diagonalizable. A matrix with three distinct real eigen-
values automatically admits three linearly independent eigenvectors. If a matrix A
has a real eigenvalue λ1 of algebraic multiplicity 2, then it has another real eigen-
value λ2 of algebraic multiplicity 1. The two eigenspaces provide three linearly
independent eigenvectors.

The matrices in 2 and 4 need not be diagonalizable.

6. Suppose a 2 × 2 matrix A has eigenvalue λ1 = −2 with eigenvector v1 =
�

3/2
1

�

,

and eigenvalue λ2 = −1 with eigenvector v2 =
�

1
−1

�

.

a) Find A.

b) Find A100.

Solution.

a) We have A= C DC−1 where

C =
�

3/2 1
1 −1

�

and D =
�

−2 0
0 −1

�

.

We compute C−1 =
1
−5/2

�

−1 −1
−1 3/2

�

=
1
5

�

2 2
2 −3

�

.

A= C DC−1 =
1
5

�

3/2 1
1 −1

��

−2 0
0 −1

��

2 2
2 −3

�

=
1
5

�

−8 −3
−2 −7

�

.

b)

A100 = C D100C−1 =
1
5

�

3/2 1
1 −1

�

· D100
�

2 2
2 −3

�

=
1
5

�

3/2 1
1 −1

��

2100 0
0 1

��

2 2
2 −3

�

=
1
5

�

3/2 1
1 −1

��

2 · 2100 2 · 2100

2 −3

�

=
1
5

�

3 · 2100 + 2 3 · 2100 − 3
2101 − 2 2101 + 3

�

.
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7. Suppose that A= C
�

1/2 0
0 −1

�

C−1, where C has columns v1 and v2. Given x and

y in the picture below, draw the vectors Ax and Ay .

v1

v2
x

y

Ax

Ay

Solution.

A does the same thing as D =
�

1/2 0
0 −1

�

, but in the v1, v2-coordinate system.

Since D scales the first coordinate by 1/2 and the second coordinate by −1, hence
A scales the v1-coordinate by 1/2 and the v2-coordinate by −1.
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Supplemental problems: §5.5

1. a) If A is the matrix that implements rotation by 143◦ in R2, then A has no real
eigenvalues.

b) A 3× 3 matrix can have eigenvalues 3,5, and 2+ i.

c) If v =
�

2+ i
1

�

is an eigenvector of A corresponding to the eigenvalue λ= 1− i,

then w =
�

2i − 1
i

�

is an eigenvector of A corresponding to the eigenvalue

λ= 1− i.

Solution.

a) True. If A had a real eigenvalue λ, then we would have Ax = λx for some
nonzero vector x in R2. This means that x would lie on the same line through
the origin as the rotation of x by 143◦, which is impossible.

b) False. If 2+ i is an eigenvalue then so is its conjugate 2− i.

c) True. Any nonzero complex multiple of v is also an eigenvector for eigenvalue
1− i, and w= iv.

2. Consider the matrix

A=

�

3
p

3− 1 −5
p

3
2
p

3 −3
p

3− 1

�

a) Find both complex eigenvalues of A.

b) Find an eigenvector corresponding to each eigenvalue.

Solution.

a) We compute the characteristic polynomial:

f (λ) = det

�

3
p

3− 1−λ −5
p

3
2
p

3 −3
p

3− 1−λ

�

= (−1−λ+ 3
p

3)(−1−λ− 3
p

3) + (2)(5)(3)

= (−1−λ)2 − 9(3) + 10(3)

= λ2 + 2λ+ 4.

By the quadratic formula,

λ=
−2±

p

22 − 4(4)
2

=
−2± 2

p
3i

2
= −1±

p
3i.

b) Let λ= −1−
p

3i. Then

A−λI =

�

(i + 3)
p

3 −5
p

3
2
p

3 (i − 3)
p

3

�

.
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Since det(A−λI) = 0, the second row is a multiple of the first, so a row echelon
form of A is

�

i + 3 −5
0 0

�

.

Hence an eigenvector with eigenvalue −1−
p

3i is v =
�

5
3+ i

�

. It follows that

an eigenvector with eigenvalue −1+
p

3i is v =
�

5
3− i

�

.

3. This problem shows an example of a matrix that has a mix of eigenvalues that are
real and not real. It isn’t computationally feasible on an exam, so doing this prob-
lem in full is just for fun. However, understanding the possibilities for eigenvalues
of an n× n matrix in terms of the Fundamental Theorem of Algebra is a key com-
ponent of section 5.5.

Let A=

 

4 −3 3
3 4 −2
0 0 2

!

. Find all eigenvalues of A. For each eigenvalue of A, find a

corresponding eigenvector.

Solution.

First we compute the characteristic polynomial by expanding cofactors along the
third row:

f (λ) = det

 

4−λ −3 3
3 4−λ −2
0 0 2−λ

!

= (2−λ)det
�

4−λ −3
3 4−λ

�

= (2−λ)
�

(4−λ)2 + 9
�

= (2−λ)(λ2 − 8λ+ 25).

Using the quadratic equation on the second factor, we find the eigenvalues

λ1 = 2 λ2 = 4− 3i λ2 = 4+ 3i.

Next compute an eigenvector with eigenvalue λ1 = 2:

A− 2I =

 

2 −3 3
3 2 −2
0 0 0

!

RREF
−−→

 

1 0 0
0 1 −1
0 0 0

!

.

The parametric form is x = 0, y = z, so the parametric vector form of the solution
is

 

x
y
z

!

= z

 

0
1
1

!

eigenvector
v1 =

 

0
1
1

!

.
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Now we compute an eigenvector with eigenvalue λ2 = 4− 3i:

A= (4− 3i)I =

 

3i −3 3
3 3i −2
0 0 3i − 2

!

R1←→R2−−−−→

 

3 3i −2
3i −3 3
0 0 3i − 2

!

R2=R2−iR1−−−−−−→

 

3 3i −2
0 0 3+ 2i
0 0 3i − 2

!

R2=R2÷(3+2i)
−−−−−−−−→

 

3 3i −2
0 0 1
0 0 3i − 2

!

row replacements
−−−−−−−−−→

 

3 3i 0
0 0 1
0 0 0

!

R1=R1÷3
−−−−−→

 

1 i 0
0 0 1
0 0 0

!

.

The parametric form of the solution is x = −i y, z = 0, so the parametric vector
form is

 

x
y
z

!

= y

 −i
1
0

!

eigenvector
v2 =

 −i
1
0

!

.

An eigenvector for the complex conjugate eigenvalue λ2 = 4 + 3i is the complex

conjugate eigenvector v2 =

 

i
1
0

!

.


