Math 1553 Worksheet §3.4

- If *A* is a 3 × 5 matrix and *B* is a 3 × 2 matrix, which of the following are defined?
 a) *A*−*B*
 - **b)** AB
 - c) $A^T B$
 - **d)** *A*²
 - **e)** $A + I_5$
 - **f)** $B^{T}I_{3}$
- **2.** Suppose *A* is an $m \times n$ matrix and *B* is an $n \times m$ matrix. Select all correct answers from the box. It is possible to have more than one correct answer.

a) Suppose x is in \mathbf{R}^m . Then ABx must be in:

b) If m > n, then columns of AB could be linearly *independent*, *dependent*

c) If m > n, then columns of BA could be linearly *independent*, *dependent*

d) If m > n and Ax = 0 has nontrivial solutions, then columns of BA could be linearly independent, dependent

3. True or false. Answer true if the statement is *always* true. Otherwise, answer false.
a) If *A*, *B*, and *C* are nonzero 2 × 2 matrices satisfying BA = CA, then B = C.

b) Suppose *A* is an 4×3 matrix whose associated transformation T(x) = Ax is not one-to-one. Then there must be a 3×3 matrix *B* which is not the zero matrix and satisfies AB = 0.

4. Consider the following linear transformations:

T: R³ → R² T projects onto the *xy*-plane, forgetting the *z*-coordinate U: R² → R² U rotates clockwise by 90°
V: R² → R² V scales the *x*-direction by a factor of 2.
Let A, B, C be the matrices for T, U, V, respectively.
a) Write A, B, and C.

b) Compute the matrix for $U \circ V \circ T$.

c) Describe U^{-1} and V^{-1} , and compute their matrices. If you have not yet seen inverse matrices in lecture, describe geometrically the transformation U^{-1} that would "undo" U in the sense that $(U^{-1} \circ U) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$. Now, do the same for V.