Math 1553 Worksheet §3.4

1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined?
a) $A-B$
b) $A B$
c) $A^{T} B$
d) A^{2}
e) $A+I_{5}$
f) $B^{T} I_{3}$
2. Suppose A is an $m \times n$ matrix and B is an $n \times m$ matrix. Select all correct answers from the box. It is possible to have more than one correct answer.
a) Suppose x is in \mathbf{R}^{m}. Then $A B x$ must be in:
$\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)$
b) If $m>n$, then columns of $A B$ could be linearly independent, dependent
c) If $m>n$, then columns of $B A$ could be linearly independent, dependent
d) If $m>n$ and $A x=0$ has nontrivial solutions, then columns of $B A$ could be linearly independent, dependent
3. True or false. Answer true if the statement is always true. Otherwise, answer false.
a) If A, B, and C are nonzero 2×2 matrices satisfying $B A=C A$, then $B=C$.
b) Suppose A is an 4×3 matrix whose associated transformation $T(x)=A x$ is not one-to-one. Then there must be a 3×3 matrix B which is not the zero matrix and satisfies $A B=0$.
4. Consider the following linear transformations:
$T: \mathbf{R}^{3} \longrightarrow \mathbf{R}^{2} \quad T$ projects onto the $x y$-plane, forgetting the z-coordinate $U: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2} \quad U$ rotates clockwise by 90° $V: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2} \quad V$ scales the x-direction by a factor of 2 . Let A, B, C be the matrices for T, U, V, respectively.
a) Write A, B, and C.
b) Compute the matrix for $U \circ V \circ T$.
c) Describe U^{-1} and V^{-1}, and compute their matrices.

If you have not yet seen inverse matrices in lecture, describe geometrically the transformation U^{-1} that would "undo" U in the sense that $\left(U^{-1} \circ U\right)\binom{x}{y}=$ $\binom{x}{y}$. Now, do the same for V.

