MATH 1553, SPRING 2022
 SAMPLE MIDTERM 1: COVERS THROUGH SECTION 2.4

| Name |
| :--- | :--- |

Please read all instructions carefully before beginning.

- Write your name at the top of each page (not just the cover page!).
- The maximum score on this exam is 70 points, and you have 75 minutes to complete this exam. Each problem is worth 10 points.
- There are no calculators or aids of any kind (notes, text, etc.) allowed.
- As always, RREF means "reduced row echelon form."
- Show your work, unless instructed otherwise. A correct answer without appropriate work will receive little or no credit!
- We will hand out loose scrap paper, but it will not be graded under any circumstances. All answers and all work must be written on the exam itself, with no exceptions.
- This exam is double-sided. You should have more than enough space to do every problem on the exam, but if you need extra space, you may use the back side of the very last page. If you do this, you must clearly indicate it.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 75 minutes, without notes or distractions.

This page was intentionally left blank.

Problem 1.

These problems are true or false. Circle \mathbf{T} if the statement is always true.
Otherwise, circle F. You do not need to justify your answer, and there is no partial credit.
a) $\mathbf{T} \quad \mathbf{F} \quad$ The matrix $\left(\begin{array}{rrr|r}1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ is in reduced row echelon form.
b) $\mathbf{T} \quad \mathbf{F} \quad$ A system of 3 linear equations in 4 variables can have exactly one solution.
c) $\mathbf{T} \quad \mathbf{F} \quad$ The vector equation $x_{1}\binom{1}{-1}+x_{2}\binom{2}{-2}=\binom{2}{2}$ is consistent.
d) $\mathbf{T} \quad \mathbf{F}$ Suppose A is an 4×3 matrix whose first column is the sum of its second and third columns. Then the equation $A x=0$ has infinitely many solutions.
e) $\quad \mathbf{T} \quad$ If A is an $m \times n$ matrix and $m>n$, then then there is at least one vector b in \mathbf{R}^{m} which is not in the span of the columns of A.

Problem 2.

Short answer. You do not need to show your work or justify your answer.
a) Complete the following mathematical definition of linear combination (be mathematically precise!): Let $v_{1}, v_{2} \ldots, v_{p}$, and w be vectors in \mathbf{R}^{n}.
We say w is a linear combination of v_{1}, \ldots, v_{p} if...
b) Are there three nonzero vectors v_{1}, v_{2}, v_{3} in \mathbf{R}^{3} so that $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$ is a plane but v_{3} is not in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$? If your answer is yes, write such vectors v_{1}, v_{2}, v_{3} and label each vector clearly.
c) Write a matrix A with the property that the equation $A x=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ is consistent.
d) Suppose A is a 2×3 matrix and v is some vector so that the set of solutions to $A x=v$ has parametric form

$$
x_{1}=1+x_{3} \quad x_{2}=2-x_{3} \quad x_{3}=x_{3} \quad\left(x_{3} \text { free }\right)
$$

Which of the following must be true? Circle all that apply.
(i) The solution set for $A x=0$ is Span $\left\{\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)\right\}$.
(ii) For each b in \mathbf{R}^{2}, the equation $A x=b$ is consistent.
(iii) v is not the zero vector.

Problem 3.

Short answer. You do not need to show your work or justify your answers except in part (d), and there is no partial credit except in part (d).
a) Suppose A is a 3×3 matrix and b_{1} and b_{2} are vectors in \mathbf{R}^{3}. Answer each of the following questions.
(i) Is it possible for $\left(A \mid b_{1}\right)$ to have a unique solution and $\left(A \mid b_{2}\right)$ to have infinitely many solutions? YES NO
(ii) Is it possible for $\left(A \mid b_{1}\right)$ to have a unique solution and $\left(A \mid b_{2}\right)$ to be inconsisent? YES NO
b) Suppose we are given a consistent linear system of 4 equations in 5 variables, and suppose that the augmented matrix corresponding to the system has 3 pivots. Then the solutions to the system is a:

(circle one answer)	point	line	plane	3-space
in:				
(circle one answer)	\mathbf{R}^{2}	\mathbf{R}^{3}	\mathbf{R}^{4}	\mathbf{R}^{5}.

c) Suppose that the plane $x_{1}-4 x_{2}+x_{3}=0$ is the set of solutions to the matrix equation $A x=0$, and suppose that $\left(\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right)$ is a solution to $A x=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$.
(i) Is it true that $A\left(\begin{array}{l}4 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$? YES NO
(ii) Is it true that $\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ is a solution to $A x=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$? YES NO
d) Find all values of a (if there are any) so that the following matrix is in reduced row echelon form: $\left(\begin{array}{ccc}1 & -2 & -1 \\ 0 & a & 1 \\ 0 & 0 & 0\end{array}\right)$. Briefly justify your answer.

Problem 4.

Free response. Show all work and justify answers as appropriate.
a) Consider the following system of linear equations.

$$
\begin{array}{r}
x+2 y+z=d \\
3 y-3 z=6 \\
-2 x-4 y+c z=7
\end{array}
$$

(i) For which values of c and d will the linear system be inconsistent?
(ii) For which values of c and d will the linear system have infinitely many solutions? Write the solutions in parametric form with these values of c and d.
b) Find all values of h so that $\left(\begin{array}{c}3 \\ -1 \\ h\end{array}\right)$ is a linear combination of $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)$

Problem 5.

Free response. Show all work and justify answers as appropriate.

Consider the following linear system of equations in the variables x_{1}, x_{2}, x_{3} :

$$
\begin{gathered}
x_{1}-2 x_{2}+2 x_{3}=1 \\
5 x_{1}-10 x_{2}+12 x_{3}=-3 \\
-3 x_{1}+6 x_{2}-6 x_{3}=-3 . \\
2 x_{1}-4 x_{2}+5 x_{3}=-2 .
\end{gathered}
$$

a) Write the augmented matrix corresponding to this system, and put the augmented matrix into RREF.
b) The system is consistent. Write the set of solutions to the system of equations in parametric vector form.
c) Write one specific vector that solves the system of equations.

Problem 6.

Parts (a) and (b) are unrelated. Show your work and justify your answers.
a) Write an augmented matrix in RREF representing a system of three equations in two unknowns, whose solution set is the line $x_{2}=2 x_{1}$ in \mathbf{R}^{2}.
b) Let $A=\left(\begin{array}{ll}2 & -4 \\ 1 & -2\end{array}\right)$. Draw the span of the columns of A below.

Problem 7.

Consider the following picture involving the two vectors v and w.

a) For each of the labeled points, estimate the coefficients x, y such that the linear combination $x v+y w$ is the vector ending at that point.
$\ldots \quad v+\ldots w=a$
\qquad
\qquad $v+$ \qquad $w=c$
\qquad $v+$ \qquad $w=d$
\qquad $v+$ \qquad $w=e$
b) Find two vectors p, q in \mathbf{R}^{2} such that none of the points a, b, c, d, e is in $\operatorname{Span}\{p, q\}$.

You don't need to show your work in this problem.

This page is reserved ONLY for work that did not fit elsewhere on the exam.
If you use this page, please clearly indicate (on the problem's page and here) which problems you are doing.

