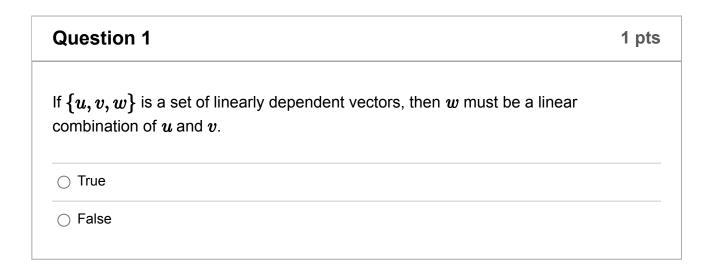
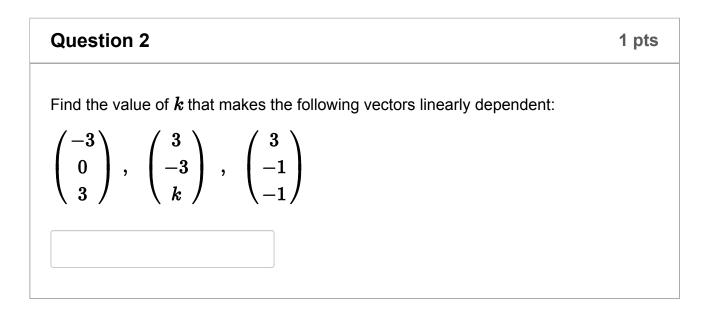
Math 1553 Reading Day Spring 2022

 $(\ensuremath{\underline{1}})$ This is a preview of the published version of the quiz

Started: Apr 9 at 3:44pm

Quiz Instructions

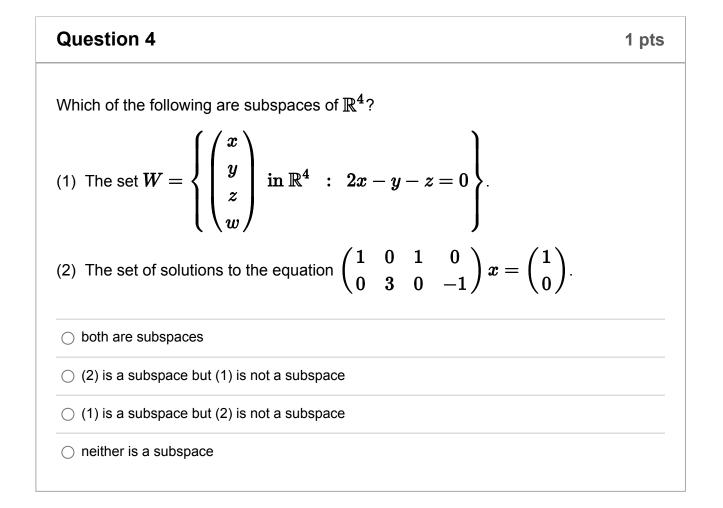


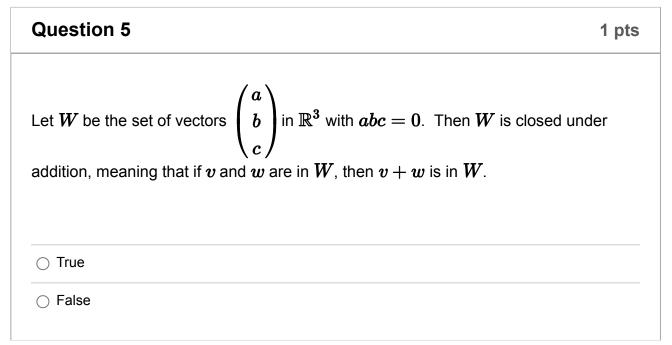


Question 3 1 pts If $\{u,v\}$ is a basis for a subspace W, then $\{u-v,u+v\}$ is also a basis for W.

⊖ True

O False





Question	6
	-

Match the transformations given below with their corresponding 2 imes 2 matrix.

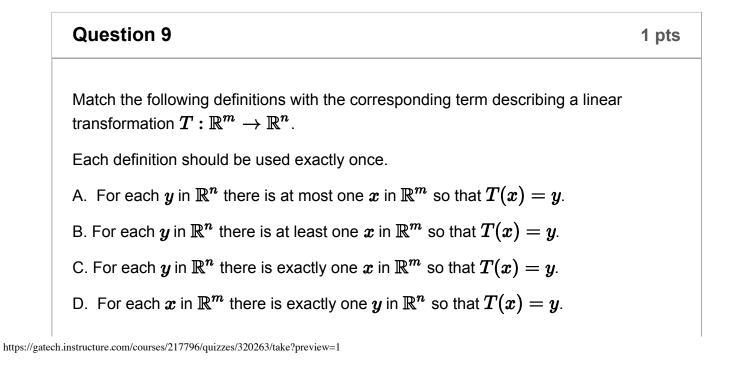
$A_{\cdot} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$			
$B. \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$			
C. $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$			
D. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$			
E. $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$			
Counter-clockwise rotation by 90 degrees	[Choose]	\checkmark	
Reflection about the line y=x	[Choose]	\checkmark	
Clockwise rotation by 90 degrees	[Choose]	\sim	
Reflection across the x-axis	[Choose]	\checkmark	
Reflection across the y-axis	[Choose]	\sim	

Question 7	1 pts

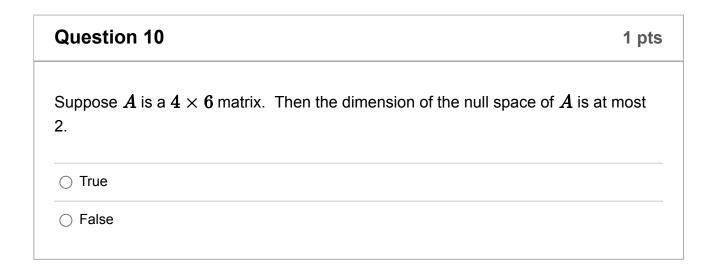
Find the value of k so that the matrix transformation for the following matrix is not onto.

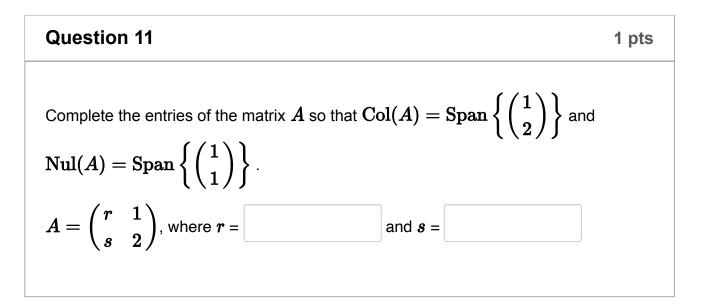
 $\begin{pmatrix} 1 & 3 & 9 \\ 2 & 6 & k \end{pmatrix}$

Question 8	1 pts
Find the nonzero value of k that makes the following matrix not invertible. $\begin{pmatrix} 1 & -1 & 0 \\ k & k^2 & 0 \\ -1 & 1 & 5 \end{pmatrix}$	
Enter an integer as your answer. Note that 0 is not the correct answer, since question asks for a nonzero value of $m k$.	e the



T is a transformation	[Choose]	\checkmark
T is one-to-one	[Choose]	\checkmark
T is onto	[Choose]	\checkmark
T is one-to-one and onto	[Choose]	\checkmark





Question 12

Suppose $T : \mathbb{R}^7 \to \mathbb{R}^9$ is a linear transformation with standard matrix A, and suppose that the range of T has a basis consisting of 3 vectors. What is the dimension of the null space of A? Question 13 1 pts Define a transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ by T(x, y, z) = (0, x - y, y - x, z). Which *one* of the following statements is true? $\Box T$ is onto but not one-to-one. $\Box T$ is one-to-one but not onto.

 $\bigcirc T$ is neither one-to-one nor onto.

 $\bigcirc m{T}$ is one-to-one and onto.

Question 14

1 pts

Suppose that A is a 7×5 matrix, and the null space of A is a line. Say that T is the matrix transformation T(v) = Av. Which of the following statements must be true about the range of T?

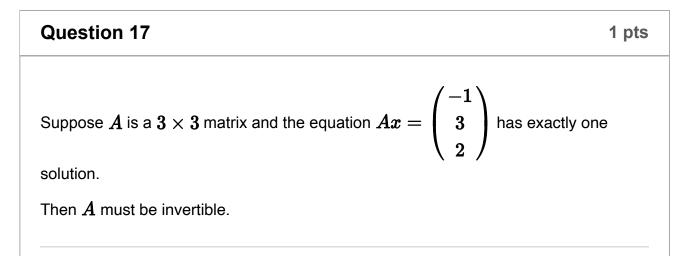
 \bigcirc It is a 6-dimensional subspace of \mathbb{R}^5

 \bigcirc It is a 6-dimensional subspace of \mathbb{R}^7

 \bigcirc It is a 4-dimensional subspace of \mathbb{R}^5

Question 15	1 pts
Say that $S:\mathbb{R}^2 o\mathbb{R}^3$ and $T:\mathbb{R}^3 o\mathbb{R}^4$ are linear transformations. Which following must be true about $T\circ S$?	of the
○ It is not onto	
○ It is not one-to-one	
○ The composition is not defined	
⊖ It is onto	
⊖ It is one-to-one	

Question 16	1 pts
Suppose that A is an invertible $n imes n$ matrix. Then $A+A$ must be invertible	ŀ.
⊖ True	
⊖ False	



○ True

False

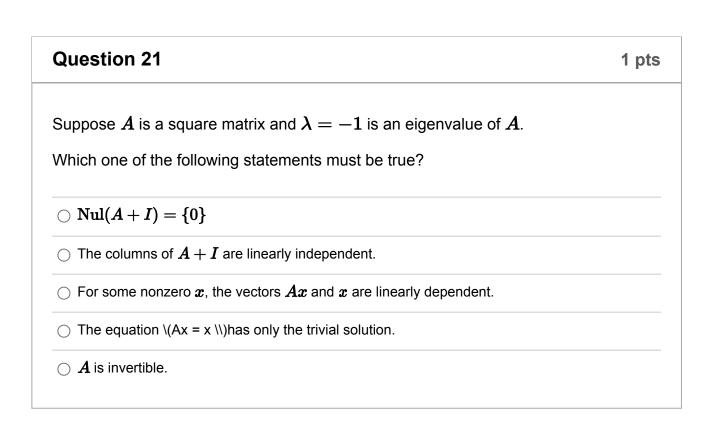
Question 18	1 pts
Suppose that A and B are $n~ imes n$ matrices and AB is not invertible.	
Which one of of the following statements must be true?	
○ B is not invertible	
○ A is not invertible	
○ At least one of the matrices A or B is not invertible	
○ None of these	

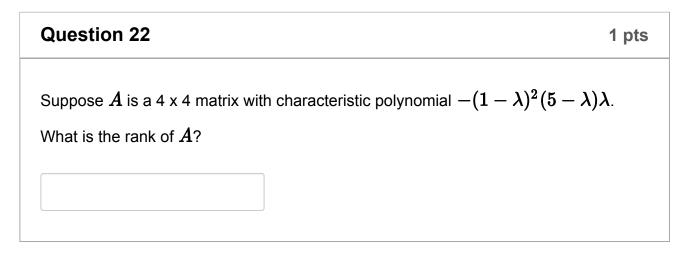
Question 19	1 pts
Suppose A and B are $3 imes 3$ matrices, with $\det(A) = 3$ and $\det(B) = -6$ Find $\det(2A^{-1}B)$.	i .

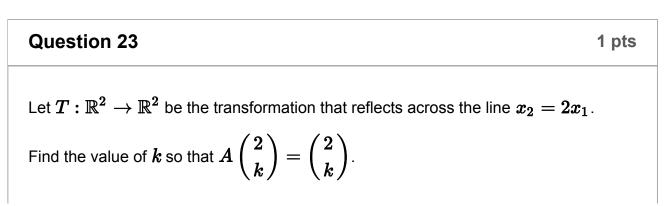
Question 20

Let A be the 3×3 matrix satisfying $Ae_1 = e_3$, $Ae_2 = e_2$, and $Ae_3 = 2e_1$ (recall that we use e_1 , e_2 , and e_3 to denote the standard basis vectors for \mathbb{R}^3). Find $\det(A)$.

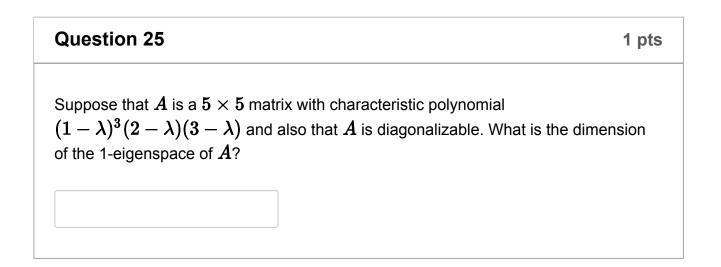
1 pts







Question 24	1 pts
Find the value of k such that the matrix $\begin{pmatrix} 1 & k \\ 1 & 3 \end{pmatrix}$ has one real eigenvalue of algebraic multiplicity 2. Enter an integer value below.	



Question 26			1 pts
Find the value of $m{t}$ such that 3 is an eigenvalue of answer below.	$\begin{pmatrix} 1\\1\\3 \end{pmatrix}$	t 1 0	3 1 3). Enter an integer

Question 27

1 pts

Say that A is a 2×2 matrix with characteristic polynomial $(1 - \lambda)(2 - \lambda)$. What is the characteristic polynomial of A^2 ?

$egin{aligned} &\bigcirc (1-\lambda^2)(4-\lambda^2) \ &\bigcirc (1-\lambda)(4-\lambda) \ &\bigcirc (1-\lambda)(2-\lambda) \ &\bigcirc (1-\lambda^2)(2-\lambda^2) \end{aligned}$	$\bigcirc \ (1-\lambda)^2(2-\lambda)^2$	
$\bigcirc (1-\lambda)(2-\lambda)$	$\bigcirc \ (1-\lambda^2)(4-\lambda^2)$	
	$\bigcirc (1-\lambda)(4-\lambda)$	
$\bigcirc \ (1-\lambda^2)(2-\lambda^2)$	$\bigcirc (1-\lambda)(2-\lambda)$	
	$\bigcirc (1-\lambda^2)(2-\lambda^2)$	

Question 28

1 pts

Suppose that a vector x is an eigenvector of A with eigenvalue 3 and that x is also an eigenvector of B with eigenvalue 4. Which of the following is true about the matrix 2A - B and x:

 $\bigcirc x$ is an eigenvector of 2A - B with eigenvalue 3

- $\bigcirc x$ is an eigenvector of 2A-B with eigenvalue 1
- $\bigcirc x$ is an eigenvector of 2A-B with eigenvalue 2

None of these

 $\bigcirc \boldsymbol{x}$ is an eigenvector of $\boldsymbol{2A}-\boldsymbol{B}$ with eigenvalue 4

Ougstion 29

Question 29	1 pts
Suppose that A is a $4 imes 4$ matrix with eigenvalues 0, 1, and 2, where 1 has algebraic multiplicity two.	the eigenvalue
Which of the following must be true?	
(1) $oldsymbol{A}$ is not diagonalizable	
(2) $oldsymbol{A}$ is not invertible	
\bigcirc (1) must be true but (2) might not be true	
\bigcirc Both (1) and (2) must be true	
\bigcirc (2) must be true but (1) might not be true	
○ Neither statement is necessarily true	

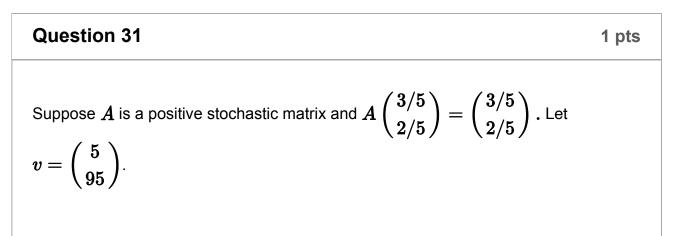
Question 30

1 pts

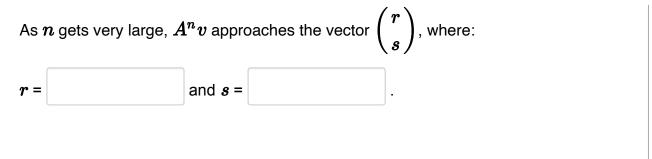
Suppose A is a 5×5 matrix whose entries are real numbers. Then A must have at least one real eigenvalue.

⊖ True

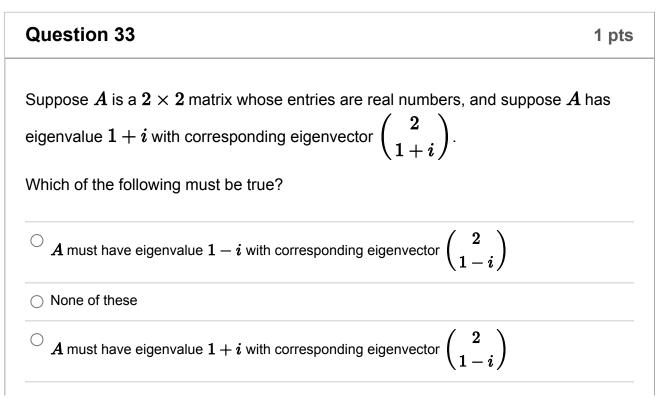
○ False



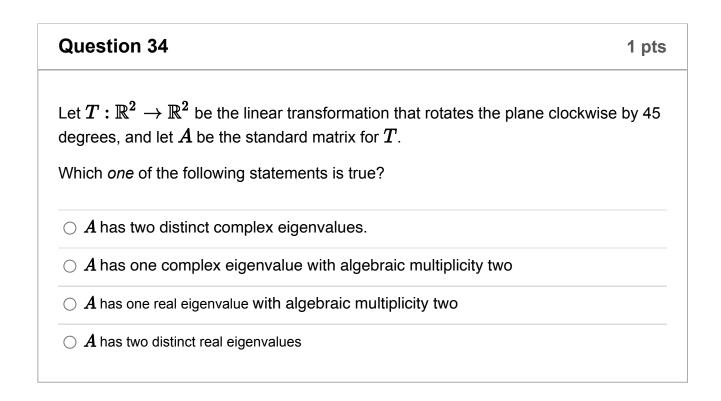
Quiz: Math 1553 Reading Day Spring 2022



Question 32	1 pts
Suppose that A is a $4 imes 4$ matrix of rank 2. Which one of the following staten must be true?	nents
$\bigcirc oldsymbol{A}$ must have four distinct eigenvalues	
$\bigcirc oldsymbol{A}$ is not diagonalizable	
\bigcirc none of these	
$\bigcirc oldsymbol{A}$ cannot have four distinct eigenvalues	
$\bigcirc oldsymbol{A}$ is diagonalizable	



 $m{A}$ must have eigenvalue 1-i with corresponding eigenvector



Question 35

1 pts

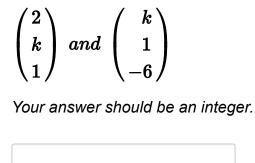
Suppose u and v are orthogonal unit vectors (to say that a vector is a unit vector means that it has length 1). Find the dot product

 $(3u-8v)\cdot 4u$

Question 36

1 pts

Find the value of k that makes the following pair of vectors orthogonal.



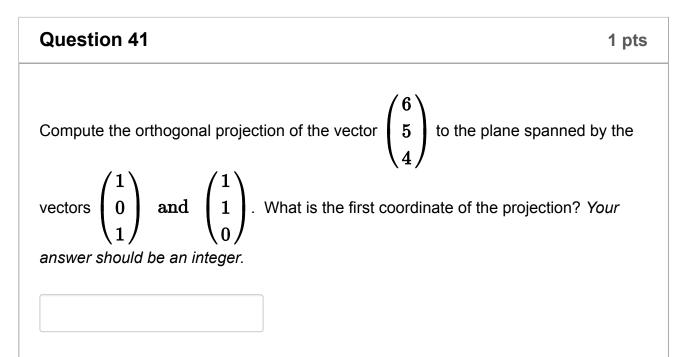
Question 37	1 pts
If W is a subspace of \mathbb{R}^{100} and v is a vector in W^{\perp} then the orthogonal proje of v to W must be the 0 vector.	ction
⊖ True	
⊖ False	

Question 38	1 pts
Suppose W is a subspace of \mathbb{R}^n . If x is a vector and x_W is the orthogonal projection of x onto W , then $x \cdot x_W$ must be 0.	
⊖ True	
⊖ False	

Question 39	1 pts
Suppose that A is a $3 imes 3$ invertible matrix. What is the dot product betwee second row of A and third column of A^{-1} equal to?	en the

○ 2				
O Not End	ough Informatior	n is Given		
○ -2				
0 0				
○ -1				
○ 1				

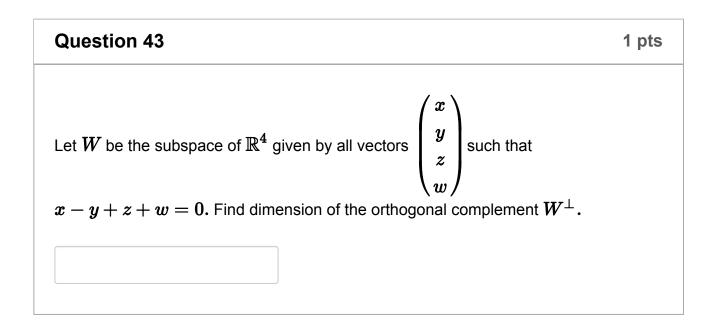
Question 40	1 pts
Find the orthogonal projection of $egin{pmatrix} 0 \\ 1 \end{pmatrix}$ onto ${f Span}\left\{egin{pmatrix} 1 \\ 2 \end{pmatrix} ight\}.$	
The orthogonal projection is $\begin{pmatrix} a \\ b \end{pmatrix}$, where: $a = \begin{bmatrix} a \\ b \end{bmatrix}$ and $b = \begin{bmatrix} a \\ b \end{bmatrix}$	=
Enter integers or fractions as your entries.	

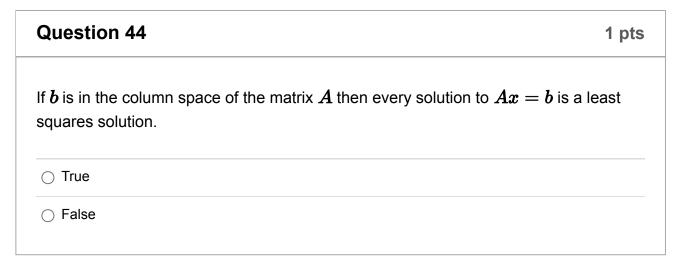


1 pts

Question 42

Suppose B is the standard matrix for the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ of orthogonal projection onto the subspace $W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbb{R}^3 \mid x + y + 2z = 0 \right\}$. What is the dimension of the 1-eigenspace of B?





Question 45	1 pts
If A is an $m imes n$ matrix, b is in \mathbb{R}^m , and \hat{x} is a least squares solution to Δ then \hat{x} is the point in $\mathrm{Col}(A)$ that is closest to b .	4x = b,
⊖ True	
⊖ False	

Question 461 ptsFind the least squares solution \hat{x} to the linear system $\begin{pmatrix} 6 \\ -2 \\ -2 \end{pmatrix} x = \begin{pmatrix} 14 \\ -2 \\ 0 \end{pmatrix}$ If your answer is an integer, enter an integer.If your answer is not an integer, enter a fraction.

Question 47		1 pts
Find the best fit line y= $(-7, -22), (0, -2), \text{ and } (7, 6)$	x+ using the method of l	for the data points least squares. <i>Your answers</i>
should both be integers.		

Question 48

Let
$$A = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} -3 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix}^{-1}$$
.
Find r and s so that $A^3 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} r \\ s \end{pmatrix}$.
 $r =$

Question 49	1 pts
If A is a diagonalizable $6 imes 6$ matrix, then A has 6 distinct eigenvalues.	
⊖ True	
⊖ False	

Question 50	1 pts
Find the eigenvalues of the matrix $A=egin{pmatrix} 1&4\4&7 \end{pmatrix}$ and write them in increasing	g order.
The smaller eigenvalue is λ_1 = .	
The larger eigenvalue is λ_2 = .	

Not saved