## Math 1553 Worksheet §6.1-§6.5

Solutions

1. True/False. Justify your answer.
(1) If $u$ is in subspace $W$, and $u$ is also in $W^{\perp}$, then $u=0$.
(2) If $y$ is in a subspace $W$, the orthogonal projection of $y$ onto $W^{\perp}$ is 0 .
(3) If $x$ is orthogonal to $v$ and $w$, then $x$ is also orthogonal to $v-w$.

## Solution.

(1) TRUE: Such a vector $u$ would be orthogonal to itself, so $u \cdot u=\|u\|^{2}=0$. Therefore, $u$ has length 0 , so $u=0$.
(2) TRUE: $y$ is in $W$, so $y \perp W^{\perp}$. Its orthogonal projection onto $W$ is $y$ and orthogonal projection onto $W^{\perp}$ is 0 . In fact $y$ has orthogonal decomposition $y=y+0$, where $y$ is in $W$ and 0 is in $W^{\perp}$.
(3) TRUE: By properties of the dot product, if $x$ is orthogonal to $v$ and $w$ then $x$ is orthogonal to everything in $\operatorname{Span}\{v, w\}$ (which includes $v-w$ ).
2. a) Find the standard matrix $B$ for $\operatorname{proj}_{L}$, where $L=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right\}$.
b) What are the eigenvalues of $B$ ? Is $B$ is diagonalizable?

## Solution.

a) We use the formula $B=\frac{1}{u \cdot u} u u^{T}$ where $u=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ (this is the formula $B=A\left(A^{T} A\right)^{-1} A^{T}$ when " $A$ " is just the single vector $\left.u\right)$.

$$
\begin{gathered}
B=\frac{1}{1(1)+1(1)+(-1)(-1)}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & -1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right) \\
\Longrightarrow B=\frac{1}{3}\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right) .
\end{gathered}
$$

b) $B x=x$ for every $x$ in $L$, and $B x=0$ for every $x$ in $L^{\perp}$, so $B$ has two eigenvalues: $\lambda_{1}=1$ with algebraic and geometric multiplicity $1, \lambda_{2}=0$ with algebraic and geometric multiplicity 2 . Therefore, $B$ is diagonalizable. We can actually compute the diagonalization of $B$ (we're not asked in the question). Here $v_{1}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ is an eigenvector for $\lambda_{1}=1$, whereas $v_{2}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ are linearly independent vectors that are orthogonal to $v_{1}$, so they span the
eigenspace for $\lambda_{2}=0$. Therefore

$$
B=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0 \\
-1 & 0 & 1
\end{array}\right)^{-1}
$$

3. $y=\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right), \quad u_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \quad u_{2}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
(1) Determine whether $u_{1}$ and $u_{2}$
(a) are linearly independent
(b) are orthogonal
(c) $\operatorname{span} \mathbf{R}^{3}$
(2) Is $y$ in $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$ ?
(3) Compute the vector $w$ that most closely approximates $y$ within $W$.
(4) Construct a vector, $z$, that is in $W^{\perp}$.
(5) Make a rough sketch of $W, y, w$, and $z$.

## Solution.

(1) A quick check shows that the vectors $u_{1}$ and $u_{2}$ are orthogonal and linearly independent, so $\operatorname{Span}\left\{u_{1}, u_{2}\right\}$ is a plane in $\mathbf{R}^{3}$, but is not all of $\mathbf{R}^{3}$.
(2) By inspection, $y$ is not in the span because it has a non-zero $x_{3}$ component.
(3) The vector $w$ is $\operatorname{proj}_{w} y$. The orthogonal projection of $y$ onto $W$ is calculated in the usual way.

$$
\begin{gathered}
A^{T} A v=A^{T} b \\
A^{T} A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), \quad A^{T} b=\binom{2}{2}, \quad \text { so } \quad\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) v=\binom{2}{2}, \quad v=\binom{1}{1} \\
w=A v=\left(\begin{array}{cc}
1 & -1 \\
1 & 1 \\
0 & 0
\end{array}\right)\binom{1}{1}=\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right) .
\end{gathered}
$$

Another quick way to do this problem is note that $W$ is the $x y$-plane of $\mathbf{R}^{3}$, so the projection of $\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)$ onto $W$ is just $\left(\begin{array}{l}0 \\ 2 \\ 0\end{array}\right)$.
(4) One vector in $W^{\perp}$ is $z=y-\operatorname{proj}_{w} y=\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)-\left(\begin{array}{l}0 \\ 2 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 4\end{array}\right)$.
(5) Here is a picture. The vector $w$ is labeled " $\mathrm{y}_{\text {hat }}$ " in the drawing.

4. Use least-squares to find the best fit line $y=A x+B$ through the points $(0,0),(1,8)$, $(3,8)$, and $(4,20)$.

## Solution.

We want to find a least squares solution to the system of linear equations

$$
\begin{aligned}
0 & =A(0)+B \\
8 & =A(1)+B \\
8 & =A(3)+B \\
20 & =A(4)+B
\end{aligned} \quad \Longleftrightarrow \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)\binom{A}{B}=\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right) .
$$

We compute

$$
\begin{aligned}
& \left(\begin{array}{llll}
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)=\left(\begin{array}{cc}
26 & 8 \\
8 & 4
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right)=\binom{112}{36} \\
& \left(\begin{array}{rr|r}
26 & 8 & 112 \\
8 & 4 & 36
\end{array}\right) \xrightarrow{\operatorname{rref}}\left(\begin{array}{ll|l}
1 & 0 & 4 \\
0 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

Hence the least squares solution is $A=4$ and $B=1$, so the best fit line is $y=4 x+1$.

