Math 1553 Worksheet §6.1-§6.5

1. True/False. Justify your answer.
(1) If u is in subspace W, and u is also in W^{\perp}, then $u=0$.
(2) If y is in a subspace W, the orthogonal projection of y onto W^{\perp} is 0 .
(3) If x is orthogonal to v and w, then x is also orthogonal to $v-w$.
2. a) Find the standard matrix B for proj_{L}, where $L=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right\}$.
b) What are the eigenvalues of B ? Is B is diagonalizable?
3. $y=\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right), \quad u_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \quad u_{2}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
(1) Determine whether u_{1} and u_{2}
(a) are linearly independent
(b) are orthogonal
(c) $\operatorname{span} \mathbf{R}^{3}$
(2) Is y in $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$?
(3) Compute the vector w that most closely approximates y within W.
(4) Construct a vector, z, that is in W^{\perp}.
(5) Make a rough sketch of W, y, w, and z.
4. Use least-squares to find the best fit line $y=A x+B$ through the points $(0,0),(1,8)$, $(3,8)$, and $(4,20)$.
