Math 1553 Worksheet §3.4-3.6

Solutions

1. True or false. Answer true if the statement is always true. Otherwise, answer false. If your answer is false, either give an example that shows it is false or (in the case of an incorrect formula) state the correct formula.
a) If A and B are $n \times n$ matrices and both are invertible, then the inverse of $A B$ is $A^{-1} B^{-1}$.
b) If A is an $n \times n$ matrix and the equation $A x=b$ has at least one solution for each b in \mathbf{R}^{n}, then the solution is unique for each b in \mathbf{R}^{n}.
c) If A is an $n \times n$ matrix and the equation $A x=b$ has at most one solution for each b in \mathbf{R}^{n}, then the solution must be unique for each b in \mathbf{R}^{n}.
d) If A and B are invertible $n \times n$ matrices, then $A+B$ is invertible and $(A+B)^{-1}=$ $A^{-1}+B^{-1}$.
e) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation Z defined by $Z(x)=A B x$ has domain \mathbf{R}^{3} and codomain \mathbf{R}^{2}.

Solution.

a) False. $(A B)^{-1}=B^{-1} A^{-1}$.
b) True. The first part says the transformation $T(x)=A x$ is onto. Since A is $n \times n$, then it has n pivots. This is the same as saying A is invertible, and there is no free variable. Therefore, the equation $A x=b$ has exactly one solution for each b in \mathbf{R}^{n}.
c) True. The first part says the transformation $T(x)=A x$ is one-to-one (namely not multiple-to-one). Since A is $n \times n$, then it has n pivots. Then there is no free variable. Therefore, the equation $A x=b$ has exactly one solution for each b in \mathbf{R}^{n}.
d) False. $A+B$ might not be invertible in the first place. For example, if $A=I_{2}$ and $B=-I_{2}$ then $A+B=0$ which is not invertible. Even in the case when $A+B$ is invertible, it still might not be true that $(A+B)^{-1}=A^{-1}+B^{-1}$. For example, $\left(I_{2}+I_{2}\right)^{-1}=\left(2 I_{2}\right)^{-1}=\frac{1}{2} I_{2}$, whereas $\left(I_{2}\right)^{-1}+\left(I_{2}\right)^{-1}=I_{2}+I_{2}=2 I_{2}$.
e) False. In order for $B x$ to make sense, x must be in \mathbf{R}^{2}, and so $B x$ is in \mathbf{R}^{4} and $A(B x)$ is in \mathbf{R}^{3}. Therefore, the domain of Z is \mathbf{R}^{2} and the codomain of Z is \mathbf{R}^{3}.
2. A is $m \times n$ matrix, B is $n \times m$ matrix. Select all correct answers from the box. It is possible to have more than one correct answer.
a) Suppose x is in \mathbf{R}^{m}. Then $A B x$ must be in:
$\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)$
b) Suppose x in \mathbf{R}^{n}. Then $B A x$ must be in:
$\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)$
c) If $m>n$, then columns of $A B$ could be linearly independent, dependent
d) If $m>n$, then columns of $B A$ could be linearly independent, dependent
e) If $m>n$ and $A x=0$ has nontrivial solutions, then columns of $B A$ could be linearly independent, dependent

Solution.

Recall, $A B$ can be computed as A multiplying every column of B. That is $A B=$ $\left(\begin{array}{lll}A b_{1} & A b_{2} & \cdots A b_{m}\end{array}\right)$ where $B=\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{m}\end{array}\right)$.
a) $\operatorname{Col}(A)$. Note $B x$ is a vector in \mathbf{R}^{n}, so $A B x=A(B x)$ is multiplying A with a vector in \mathbf{R}^{n}. Therefore, $A B x$ is a linear combination of the columns of A, so $A B x$ must be in $\operatorname{Col}(A)$.
b) $\operatorname{Col}(B)$. Similarly, $B A x=B(A x)$ is multiplying B with a vector in R^{m}, which is therefore a linear combination of columns of B, so $B A x$ is in $\operatorname{Col}(B)$.
c) dependent. The fact $m>n$ means A has at most n pivots, so $\operatorname{dim}(\operatorname{Col}(A)) \leq$ n. From part (a) we know that every vector of the form $A B x$ is in $\operatorname{Col}(A)$, which has dimension at most n. This means $A B$ can have at most n pivots. But $A B$ is an $m \times m$ matrix and $m>n$, so $A B$ can't have a pivot in every column and therefore the columns of $A B$ must be linearly dependent.
d) independent, dependent. Both are possible. Since $m>n$, we know that A and B have at most n pivots. Here $B A$ is an $n \times n$ matrix, and it is possible (but not guaranteed) for $B A$ to have a pivot in each column. We give two examples below.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \text {, then } B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \text {, then } B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

e) dependent. From the second example above, $B A$ has dependent columns, we know "dependent" is one possible answer. Now to see if "independent" is also possible, we need to find out if $B A$ could have n pivots.

Since $A x=0$ has nontrivial solution say x^{*}, then x^{*} is also a nontrivial solution of $B A x=0$. That means the equation $B A x=0$ has at least one free variable, so the columns of $B A$ must be linearly dependent.

To summarize what we are actually study here, there are several relations between these subspaces.
Every vector in $\operatorname{Col}(A B)$ is also in $\operatorname{Col}(A)$.
Every vector in $\operatorname{Col}(B A)$ is also in $\operatorname{Col}(B)$.
Every vector in $\operatorname{Nul}(A)$ is also in $\operatorname{Nul}(B A)$.
Every vector in $\operatorname{Nul}(B)$ is also in $\operatorname{Nul}(A B)$.
3. Consider the following linear transformations:
$T: \mathbf{R}^{3} \longrightarrow \mathbf{R}^{2} \quad T$ projects onto the $x y$-plane, forgetting the z-coordinate
$U: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2} \quad U$ rotates clockwise by 90°
$V: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2} \quad V$ scales the x-direction by a factor of 2.
Let A, B, C be the matrices for T, U, V, respectively.
a) Write A, B, and C.
b) Compute the matrix for $V \circ U \circ T$.
c) Compute the matrix for $U \circ V \circ T$.
d) Describe U^{-1} and V^{-1}, and compute their matrices.

Solution.

a) We plug in the unit coordinate vectors:

$$
\begin{aligned}
T\left(e_{1}\right)=\binom{1}{0} \quad T\left(e_{2}\right)=\binom{0}{1} & T\left(e_{3}\right)=\binom{0}{0}
\end{aligned} \quad \Longrightarrow \quad A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

b) $C B A=\left(\begin{array}{ccc}0 & 2 & 0 \\ -1 & 0 & 0\end{array}\right)$.
c) $B C A=\left(\begin{array}{ccc}0 & 1 & 0 \\ -2 & 0 & 0\end{array}\right)$.
d) Intuitively, if we wish to "undo" U, we can imagine that $\binom{x}{y}$. To do this, we need to rotate it 90° counterclockwise. Therefore, U^{-1} is counterclockwise rotation by 90°.

Similarly, to undo the transformation V that scales the x-direction by 2 , we need to scale the x-direction by $1 / 2$, so V^{-1} scales the x-direction by a factor of $1 / 2$.

Their matrices are, respectively,

$$
B^{-1}=\frac{1}{0 \cdot 0-(-1) \cdot 1}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

and

$$
C^{-1}=\frac{1}{2 \cdot 1-0 \cdot 0}\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right) .
$$

