Math 1553 Worksheet §3.4-3.6

- **1.** True or false. Answer true if the statement is *always* true. Otherwise, answer false. If your answer is false, either give an example that shows it is false or (in the case of an incorrect formula) state the correct formula.
 - a) If A and B are $n \times n$ matrices and both are invertible, then the inverse of AB is $A^{-1}B^{-1}$.

b) If *A* is an $n \times n$ matrix and the equation Ax = b has at least one solution for each *b* in \mathbb{R}^n , then the solution is *unique* for each *b* in \mathbb{R}^n .

c) If *A* is an $n \times n$ matrix and the equation Ax = b has at most one solution for each *b* in \mathbb{R}^n , then the solution must be *unique* for each *b* in \mathbb{R}^n .

d) If *A* and *B* are invertible $n \times n$ matrices, then A + B is invertible and $(A + B)^{-1} = A^{-1} + B^{-1}$.

e) If *A* is a 3 × 4 matrix and *B* is a 4 × 2 matrix, then the linear transformation *Z* defined by Z(x) = ABx has domain \mathbb{R}^3 and codomain \mathbb{R}^2 .

- **2.** *A* is $m \times n$ matrix, *B* is $n \times m$ matrix. Select all correct answers from the box. It is possible to have more than one correct answer.
 - a) Suppose x is in \mathbb{R}^m . Then ABx must be in:

$$Col(A)$$
, $Nul(A)$, $Col(B)$, $Nul(B)$

b) Suppose x in \mathbb{R}^n . Then BAx must be in: Col(A), Nul(A), Col(B), Nul(B)

c) If m > n, then columns of AB could be linearly independent, dependent

d) If m > n, then columns of BA could be linearly independent, dependent

e) If m > n and Ax = 0 has nontrivial solutions, then columns of BA could be linearly independent, dependent

3. Consider the following linear transformations:

 $T: \mathbf{R}^3 \longrightarrow \mathbf{R}^2$ T projects onto the xy-plane, forgetting the z-coordinate

 $U: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ U rotates clockwise by 90°

 $V: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ V scales the x-direction by a factor of 2.

Let A, B, C be the matrices for T, U, V, respectively.

a) Write *A*, *B*, and *C*.

b) Compute the matrix for $V \circ U \circ T$.

c) Compute the matrix for $U \circ V \circ T$.

d) Describe U^{-1} and V^{-1} , and compute their matrices.