Math 1553 Worksheet §5.2-§5.4

Solutions

1. Suppose A is an $n \times n$ matrix satisfying $A^{2}=0$. Find all eigenvalues of A. Justify your answer.

Solution.

If λ is an eigenvalue of A and $v \neq 0$ is a corresponding eigenvector, then

$$
A v=\lambda v \Longrightarrow A(A v)=A \lambda v \Longrightarrow A^{2} v=\lambda(A v) \Longrightarrow 0=\lambda(\lambda v) \Longrightarrow 0=\lambda^{2} v
$$

Since $v \neq 0$ this means $\lambda^{2}=0$, so $\lambda=0$. This shows that 0 is the only possible eigenvalue of A.
On the other hand, $\operatorname{det}(A)=0$ since $(\operatorname{det}(A))^{2}=\operatorname{det}\left(A^{2}\right)=\operatorname{det}(0)=0$, so 0 must be an eigenvalue of A. Therefore, the only eigenvalue of A is 0 .
2. Answer yes, no, or maybe. Justify your answers. In each case, A is a matrix whose entries are real numbers.
a) Suppose $A=\left(\begin{array}{ccc}3 & 0 & 0 \\ 5 & 1 & 0 \\ -10 & 4 & 7\end{array}\right)$. Then the characteristic polynomial of A is

$$
\operatorname{det}(A-\lambda I)=(3-\lambda)(1-\lambda)(7-\lambda) .
$$

b) If A is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda-5)^{2}$, then the 5 eigenspace is 2 -dimensional.
c) If A is an invertible 2×2 matrix, then A is diagonalizable.

Solution.

a) Yes. Since $A-\lambda I$ is triangular, its determinant is the product of its diagonal entries.
b) Maybe. The geometric multiplicity of $\lambda=5$ can be 1 or 2 . For example, the matrix $\left(\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0\end{array}\right)$ has a 5 -eigenspace which is 2 -dimensional, whereas the matrix $\left(\begin{array}{lll}5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0\end{array}\right)$ has a 5 -eigenspace which is 1-dimensional. Both matrices have characteristic polynomial $-\lambda(5-\lambda)^{2}$.
c) Maybe. The identity matrix is invertible and diagonalizable, but the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is invertible but not diagonalizable.
3. The eigenspaces of some 2×2 matrix A are drawn below. Write an invertible matrix C and a diagonal matrix D so that $A=C D C^{-1}$. Can you find another pair of C and D so that $A=C D C^{-1}$?

Solution.

We choose D to be a diagonal matrix whose entries are the eigenvalues of A, and C a matrix whose columns are corresponding eigenvectors (written in the same order).

The eigenvalues of A are $\lambda_{1}=-1$ and $\lambda_{2}=-2$.
The (-1)-eigenspace is spanned by $v_{1}=\binom{1}{-1}$.
The (-2)-eigenspace is spanned by $v_{2}=\binom{3}{2}$.
Therefore, we can choose $C=\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)=\left(\begin{array}{cc}1 & 3 \\ -1 & 2\end{array}\right)$ and $D=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right)$.
There are many possibilities for C and D.
For example, since Span $\left\{\binom{1}{-1}\right\}=$ Span $\left\{\binom{-1}{1}\right\}$, we could have chosen $v_{1}=\binom{-1}{1}$ instead, so that

$$
C=\left(\begin{array}{cc}
-1 & 3 \\
1 & 2
\end{array}\right), \quad D=\left(\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right) .
$$

Alternatively, we could have rearranged the order of the diagonal entries of D and taken care to use the corresponding order in the columns of C :

$$
C=\left(\begin{array}{cc}
3 & 1 \\
2 & -1
\end{array}\right), \quad D=\left(\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right) .
$$

Regardless, if you write any correct answers for C and D and go the extra step of carrying out the computation, you will obtain

$$
A=C D C^{-1}=-\frac{1}{5}\left(\begin{array}{ll}
8 & 3 \\
2 & 7
\end{array}\right)
$$

4. Suppose A is a 2×2 matrix satisfying

$$
A\binom{-1}{1}=\binom{2}{-2}, \quad A\binom{-2}{3}=\binom{0}{0} .
$$

a) Diagonalize A by finding 2×2 matrices C and D (with D diagonal) so that $A=C D C^{-1}$.
b) Find A^{17}.

Solution.

a) From the information given, $\lambda_{1}=-2$ is an eigenvalue for A with corresponding eigenvector $\binom{-1}{1}$, and $\lambda_{2}=0$ is an eigenvalue with eigenvector $\binom{-2}{3}$. By the Diagonalization Theorem, $A=C D C^{-1}$ where

$$
C=\left(\begin{array}{cc}
-1 & -2 \\
1 & 3
\end{array}\right), \quad D=\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right)
$$

b) We find $C^{-1}=\frac{1}{-3+2}\left(\begin{array}{cc}3 & 2 \\ -1 & -1\end{array}\right)=\left(\begin{array}{cc}-3 & -2 \\ 1 & 1\end{array}\right)$.

$$
\begin{aligned}
A^{17} & =C D^{17} C^{-1}=\left(\begin{array}{cc}
-1 & -2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
(-2)^{17} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
-3 & -2 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & -2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
3 \cdot 2^{17} & 2^{18} \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
-3 \cdot 2^{17} & -2^{18} \\
3 \cdot 2^{17} & 2^{18}
\end{array}\right) .
\end{aligned}
$$

