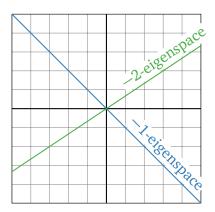
Math 1553 Worksheet §5.2 - §5.4

1. Suppose *A* is an $n \times n$ matrix satisfying $A^2 = 0$. Find all eigenvalues of *A*. Justify your answer.


2. Answer yes, no, or maybe. Justify your answers. In each case, *A* is a matrix whose entries are real numbers.

a) Suppose
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 5 & 1 & 0 \\ -10 & 4 & 7 \end{pmatrix}$$
. Then the characteristic polynomial of A is $\det(A - \lambda I) = (3 - \lambda)(1 - \lambda)(7 - \lambda).$

b) If *A* is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda - 5)^2$, then the 5-eigenspace is 2-dimensional.

c) If A is an invertible 2×2 matrix, then A is diagonalizable.

3. The eigenspaces of some 2×2 matrix *A* are drawn below. Write an invertible matrix *C* and a diagonal matrix *D* so that $A = CDC^{-1}$. Can you find another pair of *C* and *D* so that $A = CDC^{-1}$?

4. Suppose *A* is a 2×2 matrix satisfying

$$A\begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 2\\-2 \end{pmatrix}, \qquad A\begin{pmatrix} -2\\3 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}.$$

a) Diagonalize *A* by finding 2×2 matrices *C* and *D* (with *D* diagonal) so that $A = CDC^{-1}$.

b) Find *A*¹⁷.