Math 1553 Worksheet §5.2-§5.4

1. Suppose A is an $n \times n$ matrix satisfying $A^{2}=0$. Find all eigenvalues of A. Justify your answer.
2. Answer yes, no, or maybe. Justify your answers. In each case, A is a matrix whose entries are real numbers.

$$
\text { a) Suppose } A=\left(\begin{array}{ccc}
3 & 0 & 0 \\
5 & 1 & 0 \\
-10 & 4 & 7
\end{array}\right) \text {. Then the characteristic polynomial of } A \text { is } \quad \begin{gathered}
\operatorname{det}(A-\lambda I)=(3-\lambda)(1-\lambda)(7-\lambda) .
\end{gathered}
$$

b) If A is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda-5)^{2}$, then the 5eigenspace is 2 -dimensional.
c) If A is an invertible 2×2 matrix, then A is diagonalizable.
3. The eigenspaces of some 2×2 matrix A are drawn below. Write an invertible matrix C and a diagonal matrix D so that $A=C D C^{-1}$. Can you find another pair of C and D so that $A=C D C^{-1}$?

4. Suppose A is a 2×2 matrix satisfying

$$
A\binom{-1}{1}=\binom{2}{-2}, \quad A\binom{-2}{3}=\binom{0}{0} .
$$

a) Diagonalize A by finding 2×2 matrices C and D (with D diagonal) so that $A=C D C^{-1}$.
b) Find A^{17}.

