Math 1553 Worksheet §5.4-5.6

1. True or false. Justify your answer.

A 3×3 matrix *A* can have a non-real complex eigenvalue with multiplicity 2.

2. Let $A = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}^{-1}$, and let $x = \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. What happens to $A^n x$ as n gets very large?

3. Let $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$. Find all eigenvalues of A. For each eigenvalue, find an associated eigenvector.

4. A video game offers participants the chance to play as one of two characters: Archer or Barbarian. The game has 100 million players.

In 2023:

Archer is played by 60 million players. Barbarian is played by 40 million players.

One year later, in 2024:

- 60% of the people who started with the Archer still play with the Archer, while 40% have switched to Barbarian.
- 70% of the customers who stared with the Barbarian still play with the Barbarian, while 30% have switched to Archer.
- **a)** Write down the stochastic matrix *A* which represents the change in each character's popularity from 2023 to 2024, and use it to find the number of people who played with each character in 2024.

b) Suppose the trend continues each year. In the distant future, who will be the most popular character? What will be the player distribution?