Math 1553 Worksheet §6.1 - §6.5

True/False. Justify your answer.
(1) If *u* is a vector that is orthogonal to itself, then *u* = 0.

(2) If y is in a subspace W, the orthogonal projection of y onto W^{\perp} is 0.

(3) If x is orthogonal to v and w, then x is also orthogonal to v - w.

2. a) Find the standard matrix *B* for proj_W , where $W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\}$.

b) What are the eigenvalues of *B*? Is *B* diagonalizable?

c) Let $x = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$. Find the projection x_W of x onto the subspace W and the orthogonal projection $x_{W^{\perp}}$ of x onto the subspace W^{\perp} .

3. Use least-squares to find the best fit line y = Ax + B through the points (0,0), (1,8), (3,8), and (4,20).