Math 1553 Worksheet §2.1, §2.2

1. Consider the system of linear equations

$$
\begin{aligned}
x+2 y & =7 \\
2 x+y & =-2 \\
-x-y & =4
\end{aligned}
$$

Question: What are the solutions (if there are any) to the system?
a) Formulate this question as a question about an augmented matrix.
b) Answer the question using row reduction.
c) Formulate this question as a vector equation.
d) What does this question mean in terms of spans?
e) Answer part (d) using the interactive demo.
2. a) Write a set of three different vectors whose span is a line in \mathbf{R}^{3}.
b) Write a set of three different vectors whose span is a plane in \mathbf{R}^{3}.
c) Write a set of three vectors whose span is only a single point in \mathbf{R}^{3}.
d) In each of the above questions, if you form the matrix A whose columns are the three vectors, how many pivots does A have?
3. Jameson Locke has challenged you to find a hidden treasure, located at some point (a, b, c). He has honestly guaranteed you that the treasure can be found by starting at the origin and taking steps using

$$
v_{1}=\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right) \quad v_{2}=\left(\begin{array}{c}
5 \\
-4 \\
-7
\end{array}\right) \quad v_{3}=\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right) .
$$

By decoding the message, you have discovered that the first and second coordinates of the treasure's location are (in order) -4 and 3 .
a) What is the treasure's full location?
b) Give instructions for how to find the treasure by only using v_{1}, v_{2}, and v_{3}. Can you do the same to get the treasure by just using v_{1} and v_{2} ?

