Math 1553 Worksheet §2.5, 2.6, 2.7, 2.9, 3.1

Solutions

1. If the statement is always true, circle TRUE. Otherwise, circle FALSE. Justify your answer.
a) Suppose $A=\left(\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right)$ and $A\left(\begin{array}{c}-3 \\ 2 \\ 7\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. Must v_{1}, v_{2}, v_{3} be linearly dependent? If true, write a linear dependence relation for the vectors.

TRUE FALSE

b) If b is in $\operatorname{Col}(A)$, then so is $5 b$. TRUE FALSE
c) In the following, A is an $m \times n$ matrix.
(1) TRUE FALSE If A has linearly dependent columns, then $m<n$.
(2) TRUE FALSE If A has linearly independent columns, then $A x=b$ must have at least one solution for each b in \mathbf{R}^{m}.
(3) TRUE FALSE If b is a vector in \mathbf{R}^{m} and $A x=b$ has exactly one solution, then $m \geq n$.

Solution.

a) TRUE. By definition of matrix multiplication, $-3 v_{1}+2 v_{2}+7 v_{3}=0$, so $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent and the equation gives a linear dependence relation.
b) TRUE. Let v be a solution to $A x=b$, so $A v=b$. Then $A(5 v)=5 A v=5 b$.
c) (1) FALSE For example $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
(Note that even though this part was false, there is a very similar-sounding statement that is true: if $m<n, A$ must have linearly dependent columns.)
(2) FALSE For example $A=\binom{1}{0}, b=\binom{0}{1}$. There is no solution for $A x=b$. (Note, however: if A has linearly independent columns, then the system $A x=0$ has no free variables, so $A x=b$ is either inconsistent or has a unique solution.)
(3) TRUE If $A x=b$ has a unique solution, then since it is a translation of the solution set to $A x=0$, this means that $A x=0$ has only the trivial solution (no free variables). Thus, A has a pivot in every column, which is impossible if $m<n$ (i.e. impossible if A has more columns than rows), so $m \geq n$.
2. Circle TRUE if the statement is always true, and circle FALSE otherwise.
a) If A is a 3×10 matrix with 2 pivots, then $\operatorname{dim}(\operatorname{Nul} A)=8$ and $\operatorname{rank}(A)=2$.

TRUE FALSE

b) If A is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the transformation $T(x)=A x$ must have \mathbf{R}^{m} as its range.

TRUE FALSE
c) If $\{a, b, c\}$ is a basis of a subspace V, then $\{a, a+b, b+c\}$ is a basis of V as well.

TRUE FALSE

Solution.

a) True. Recall that when we say a matrix has two pivots, we mean that its RREF has two pivots. $\operatorname{rank}(A)$ is the same as number of pivots in $A . \operatorname{dim}(\operatorname{Nul} A)$ is the same as the number of free variables. Moreover by the Rank Theorem, $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul} A)=10$, so $\operatorname{dim}(\operatorname{Nul} A)=10-2=8$.
b) False. For example, $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ has only the trivial solution for $A x=0$, but its column space is a 2-dimensional subspace of \mathbf{R}^{3}.
c) True. Because a and b are independent, $a+b$ and a are linearly independent, and furthermore a and b are in $\operatorname{Span}\{a, a+b\}$. Next, c is independent from $\{a, b\}$, so $b+c$ is independent from $\{a, a+b\}$, meaning that $\{a, a+b, b+$ $c\}$ is independent by the increasing span criterion. Since $a, a+b, b+c$ are all clearly in $\operatorname{Span}\{a, b, c\}$, by the basis theorem $\{a, a+b, b+c\}$ also form a span for $\operatorname{Span}\{a, b, c\}=V$. Alternatively, we could notice that a, b, and c are $\operatorname{Span}\{a, a+b, b+c\}$, and since $V=\operatorname{Span}\{a, b, c\}$ it is a three-dimensional space spanned by the set of three elements $\{a, a+b, b+c\}$, those three elements must form a basis, by the basis theorem.
3. Write a matrix A so that $\operatorname{Col}(A)$ is the solid blue line and $\operatorname{Nul}(A)$ is the dotted red line drawn below.

Solution.

We'd like to design an A with the prescribed column space Span $\left\{\binom{1}{4}\right\}$ and null space $\operatorname{Span}\left\{\binom{3}{-1}\right\}$.

We start with analyzing the null space. We can write parametric form of the null space:

$$
\binom{x_{1}}{x_{2}}=t\binom{3}{-1} \quad \text { is the same as }\binom{x_{1}}{x_{2}}=\binom{-3 x_{2}}{x_{2}}
$$

Then this implies the RREF of A must be $\left(\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right)$.
Now we need to combine the information that column space is Span $\left\{\binom{1}{4}\right\}$. That means the second row must be 4 multiple of the first row. Therefore the second row must be (412). We conclude,

$$
A=\left(\begin{array}{cc}
1 & 3 \\
4 & 12
\end{array}\right)
$$

Note any nonzero scalar multiple of the above matrix is also a solution.
4. Let $A=\left(\begin{array}{cccc}1 & -5 & -2 & -4 \\ 2 & 3 & 9 & 5 \\ 1 & 1 & 4 & 2\end{array}\right)$, and let T be the matrix transformation associated to A, so $T(x)=A x$.
a) What is the domain of T ? What is the codomain of T ? Give an example of a vector in the range of T.
b) This is extra practice in case the studio finishes the rest of the worksheet early.

The RREF of A is $\left(\begin{array}{llll}1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$.
(i) Write bases for $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$.
(ii) Is there a vector in the codomain of T which is not in the range of T ? Justify your answer.

Solution.

a) The domain is \mathbf{R}^{4}; the codomain is \mathbf{R}^{3}. The vector $0=T(0)$ is contained in the range, as is

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=T\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) .
$$

b) (i) First, recall that the columns of A, which correspond to pivots in the RREF of A, form a basis for $\operatorname{Col}(A)$. We note that the first and second column of the RREF of A contain pivots. Therefore, the first and second columns of A form a basis for $\operatorname{Col}(A)$. That is,

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{c}
-5 \\
3 \\
1
\end{array}\right)\right\} .
$$

Notice that the columns in the RREF of A do not form such basis themselves and in order to write a basis for $\operatorname{Col}(A)$, we need to use the corresponding columns in the matrix A itself.

In order to write a basis for $\operatorname{Nul}(A)$, we need to find the solution to the matrix equation $A\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=0$ in parametric vector form. Since x_{3} and x_{4} are free variables in this example. The parametric solution would be

$$
\left\{\begin{array}{l}
x_{1}=-3 x_{3}-x_{4} \\
x_{2}=-x_{3}-x_{4}
\end{array}\right.
$$

which in vector form can be written as

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
1
\end{array}\right) .
$$

Therefore, a basis for $\operatorname{Nul}(A)$ is given by

$$
\left\{\left(\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
1
\end{array}\right)\right\}
$$

(ii) Yes. The range of T is the column span of A, and A only has two pivots, so its column span is a 2-dimensional subspace of \mathbf{R}^{3}. Since $\operatorname{dim}\left(\mathbf{R}^{3}\right)=3$, the range is not equal to \mathbf{R}^{3}.

