## Math 1553 Worksheet §3.4-3.6

1. True or false. Answer true if the statement is always true. Otherwise, answer false. If your answer is false, either give an example that shows it is false or (in the case of an incorrect formula) state the correct formula.
a) If $A$ and $B$ are $n \times n$ matrices and both are invertible, then the inverse of $A B$ is $A^{-1} B^{-1}$.
b) If $A$ is an $n \times n$ matrix and the equation $A x=b$ has at least one solution for each $b$ in $\mathbf{R}^{n}$, then the solution is unique for each $b$ in $\mathbf{R}^{n}$.
c) If $A$ is a $3 \times 4$ matrix and $B$ is a $4 \times 2$ matrix, then the linear transformation $Z$ defined by $Z(x)=A B x$ has domain $\mathbf{R}^{3}$ and codomain $\mathbf{R}^{2}$.
d) Suppose $A$ is an $n \times n$ matrix and every vector in $\mathbf{R}^{n}$ can be written as a linear combination of the columns of $A$. Then $A$ must be invertible.
e) If $A, B$, and $C$ are nonzero $2 \times 2$ matrices satisfying $B A=C A$, then $B=C$.
2. $A$ is $m \times n$ matrix, $B$ is $n \times m$ matrix. Select all correct answers from the box. It is possible to have more than one correct answer.
a) Suppose $x$ is in $\mathbf{R}^{m}$. Then $A B x$ must be in:

$$
\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)
$$

b) Suppose $x$ in $\mathbf{R}^{n}$. Then BAx must be in:
$\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)$
c) If $m>n$, then columns of $A B$ could be linearly independent, dependent
d) If $m>n$, then columns of BA could be linearly independent, dependent
e) If $m>n$ and $A x=0$ has nontrivial solutions, then columns of $B A$ could be linearly independent, dependent
3. Consider the following linear transformations:
$T: \mathbf{R}^{3} \longrightarrow \mathbf{R}^{2} \quad T$ projects onto the $x y$-plane, forgetting the $z$-coordinate
$U: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2} \quad U$ rotates clockwise by $90^{\circ}$
$V: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2} \quad V$ scales the $x$-direction by a factor of 2.
Let $A, B, C$ be the matrices for $T, U, V$, respectively.
a) Write $A, B$, and $C$.
b) Compute the matrix for $U \circ V \circ T$.
c) Describe $U^{-1}$ and $V^{-1}$, and compute their matrices.

