Congruence Subgroups of the Braid Group

Wade Bloomquist

December 10, 2022
Tech Topology Conference

Vague Big Picture

- We will look at a representation of the braid group (the integral Burau representation)
- I claim this is a natural example for us
- I'll also give you a different perspective

Shout Out

Joint with Nancy Scherich and Peter Patzt
"Quotients of braid groups by their congruence subgroups"-arxiv:2209.09889

Our Pre-Comfort Zone

$\mathrm{SL}(2, \mathbb{Z})$ acts on \mathbb{Z}^{2}

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{0}{1}=\binom{1}{1}
$$

Our Comfort Zone

Mapping Class Group acts on Homology

$$
\operatorname{MCG}(\Sigma) \rightarrow \operatorname{Aut}\left(H_{1}(\Sigma, \mathbb{Z})\right)
$$

$$
\begin{gathered}
f: \Sigma \rightarrow \Sigma \\
f_{*}: H_{1}(\Sigma, \mathbb{Z}) \rightarrow H_{1}(\Sigma, \mathbb{Z}) \\
f_{*}([\gamma])=[f(\gamma)]
\end{gathered}
$$

\square December 10, $\overline{\bar{\nu}} 2022$ Tech Topōogy Confere

Back to $\operatorname{SL}(2, \mathbb{Z})$
$H_{1}\left(T^{2}, \mathbb{Z}\right) \cong \mathbb{Z}^{2}$ (meridian and longitude)

$\operatorname{MCG}\left(T^{2}\right) \cong \operatorname{SL}(2, \mathbb{Z})$

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{0}{1}=\binom{1}{1}
$$

4 December 10, 2022 Tech Topōogy Confere

Back to Genus g

$$
H_{1}\left(\Sigma_{g}, \mathbb{Z}\right) \cong \mathbb{Z}^{2 g}
$$

$\operatorname{Aut}\left(\mathbb{Z}^{2 g}\right)$ is $\mathrm{GL}(2 g, \mathbb{Z})$

$$
\operatorname{MCG}\left(\Sigma_{g}\right) \rightarrow \operatorname{GL}(2 g, \mathbb{Z})
$$

$4 \square$ December 10, 2022 Tech Topō $\overline{\bar{z}}$ ogy Confere

But where in $G L(2 g, \mathbb{Z})$

$$
I: H_{1}\left(\Sigma_{g}, \mathbb{Z}\right) \times H_{1}\left(\Sigma_{g}, \mathbb{Z}\right) \rightarrow \mathbb{Z}
$$

algebraic intersection is preserved

$$
\begin{aligned}
& \hat{\rho}: \operatorname{MCG}\left(\Sigma_{g}\right) \rightarrow \operatorname{Sp}(2 g, \mathbb{Z}) \\
& \hat{\rho}\left(T_{b}([a])\right)=[a]+I(a, b)[b]
\end{aligned}
$$

The Symplectic Representation

Theorem (Burkhardt (1890))
The map

$$
\hat{\rho}: \operatorname{MCG}\left(\Sigma_{g}\right) \rightarrow \operatorname{Sp}(2 g, \mathbb{Z})
$$

is surjective.
Immediate corollary

$$
\operatorname{MCG}\left(\Sigma_{g}\right) \rightarrow \operatorname{Sp}(2 g, \mathbb{Z} / m \mathbb{Z})
$$

Congruence Subgroups of Symplectic Groups

$$
r_{m}: \operatorname{Sp}(2 g, \mathbb{Z}) \rightarrow \operatorname{Sp}(2 g, \mathbb{Z} / m \mathbb{Z})
$$

Level m subgroup

$$
\begin{gathered}
\operatorname{Sp}(2 g, \mathbb{Z})[m]:=\operatorname{ker}\left(r_{m}\right) \\
I d_{2 g}+m X \in \operatorname{Sp}(2 g, \mathbb{Z})
\end{gathered}
$$

$$
\operatorname{Sp}(2 g, \mathbb{Z}) / \operatorname{Sp}(2 g, \mathbb{Z})[m] \cong \operatorname{Sp}(2 g, \mathbb{Z} / m \mathbb{Z})
$$

Congruence Subgroups of Mapping Class Groups

$$
\hat{\rho}: \operatorname{MCG}\left(\Sigma_{g}\right) \rightarrow \operatorname{Sp}(2 g, \mathbb{Z})
$$

Level m subgroup

$$
\begin{gathered}
\operatorname{MCG}\left(\Sigma_{g}\right)[m]:=\operatorname{ker}\left(r_{m} \circ \hat{\rho}\right) \\
\hat{\rho}(f)=I d_{2 g}+m X \in \operatorname{Sp}(2 g, \mathbb{Z}) \\
\operatorname{MCG}\left(\Sigma_{g}\right)[m]=(\hat{\rho})^{-1}(\operatorname{Sp}(2 g, \mathbb{Z})[m])
\end{gathered}
$$

The mod m Symplectic Representation

$$
\begin{gathered}
\operatorname{Im}\left(r_{m} \circ \hat{\rho}\right)=\operatorname{Sp}(2 g, \mathbb{Z} / m \mathbb{Z}) \\
\operatorname{MCG}\left(\Sigma_{g}\right) / \operatorname{MCG}\left(\Sigma_{g}\right)[m] \cong \operatorname{Sp}(2 g, \mathbb{Z} / m \mathbb{Z})
\end{gathered}
$$

Braid Groups

You were promised braid groups!

Hyperelliptic involution and Birman-Hilden

$$
B_{2 g+1} \hookrightarrow \operatorname{MCG}\left(\Sigma_{g}^{1}\right)
$$

Integral Burau Representation and Congruence Subgroups

$$
\rho: B_{2 g+1} \hookrightarrow \operatorname{MCG}\left(\Sigma_{g}^{1}\right) \rightarrow \operatorname{Sp}(2 g, \mathbb{Z})
$$

The level m braid group

$$
\begin{gathered}
B_{2 g+1}[m]:=\operatorname{ker}\left(r_{m} \circ \rho\right) \\
B_{2 g+1}[m]=\rho^{-1}(\operatorname{Sp}(2 g, \mathbb{Z})[m])
\end{gathered}
$$

The Hurdle

$$
\rho: B_{2 g+1} \rightarrow \operatorname{Sp}(2 g, \mathbb{Z})
$$

is not surjective

So what is the image? or

$$
B_{2 g+1} / B_{2 g+1}[m] \cong ?
$$

The Image

Theorem (B.-Patzt-Scherich 2022)
For $g \geq 2$ and ℓ odd

$$
B_{2 g+1} / B_{2 g+1}\left[2^{k} \ell\right] \cong \mathcal{Z}_{g, k} \times \operatorname{Sp}(2 g, \mathbb{Z} / \ell \mathbb{Z})
$$

where $\mathcal{Z}_{g, k}$ is a non-split extension of S_{n} by $\operatorname{Sp}(2 g, \mathbb{Z})[2] / \operatorname{Sp}(2 g, \mathbb{Z})\left[2^{k}\right]$.

Our paper covers the $g=1$ and n even cases as well
Theorem (B.-Patzt-Scherich 2022)
We describe $B_{n} / B_{n}[m]$.

Split it up

Lemma

For $(m, \ell)=1$

$$
B_{2 g+1} / B_{2 g+1}[m \ell] \cong B_{2 g+1} / B_{2 g+1}[m] \times B_{2 g+1} / B_{2 g+1}[\ell] .
$$

- $B_{n} \cong B_{n}[m] \cdot B_{n}[\ell] \quad \sigma_{i}=\sigma_{i}^{a m+b \ell}=\left(\sigma_{i}^{m}\right)^{a}\left(\sigma_{i}^{\ell}\right)^{b}$
- $B_{n}[m \ell]=B_{n}[m] \cap B_{n}[\ell]$
- $H K /(H \cap K) \cong H K / H \times H K / K$

So

$$
B_{2 g+1} / B_{2 g+1}\left[p^{k}\right] \cong ?
$$

What was known?

- $B_{2 g+1} / B_{2 g+1}[2] \cong S_{n}$ (Arnol'd 1968)
- $B_{2 g+1} / B_{2 g+1}[p] \cong S p(2 g, \mathbb{Z} / p \mathbb{Z})$ (A'Campo 1979)
- $B_{2 g+1} / B_{2 g+1}[4] \cong$ a non-split extension of S_{n} by $(\mathbb{Z} / 2 \mathbb{Z})^{\left(\begin{array}{l}\left(\begin{array}{l}2\end{array}\right)\end{array}\right)}$ (Kordek-Margalit 2019)

And a slightly different key tool

- $B_{2 g+1}[2] \rightarrow S p(2 g, \mathbb{Z})[2]$ (Brendle-Margalit 2018)
- $B_{2 g+1}[2 \ell] \rightarrow S p(2 g, \mathbb{Z})[2 \ell]$

The Five Lemma

Summary- mod m integral Burau

$$
r_{m} \circ \rho: B_{2 g+1} \rightarrow \operatorname{Sp}(2 g, \mathbb{Z} / m \mathbb{Z})
$$

We described the image of this map

Scooby-Doo

The mod p integral Burau representation

The villian revealed

Untwisted Dijkgraaf-Witten theory with dihedral gauge group

