Why the Thurston Metric is (Not) like L^{∞}

Assaf Bar-Natan

Dec. 11, 2022

Tech Topology 2022

Properties of L^{∞}

metric on R² d ((x, x2), (y, y2) = Max (|x, - X2|, 1y, - y21) · Sometimes Unique (neodesics: B · Conget for apart oln a cone defined by unique geodesics

Teichmüller Space

Teichmüller Space

Teichmüller Space

Dec. 11, 2022 – Why the Thurston Metric is (Not) like L^{∞}

Thurston Metric dp. (X,Y) = log Sup dp. (X,Y) = log Sup d x s.c.c $\frac{l_x(Y)}{l_x(X)}$ geodesic rep.

The Thurston Metric

$$d_{\mu}(x,Y) = \log \sup_{\substack{x \in \mathcal{L}_{\kappa}(Y)}} \frac{l_{\kappa}(Y)}{l_{\kappa}(x)} \frac{l_{ength}}{fec^{4}} of geodesic rep.$$

 $\int_{\substack{x \in \mathcal{L}_{\kappa}}} \frac{l_{\kappa}(Y)}{l_{\kappa}(x)} \frac{fec^{4}}{fec^{4}} \int_{\substack{x \in \mathcal{L}_{\kappa}}} \frac{l_{\kappa}(Y)}{l_{\kappa}(x)} \frac{fec^{4}}{f_{\kappa}(Y)} \int_{\substack{x \in \mathcal{L}_{\kappa}}} \frac{l_{\kappa}(Y)}{l_{\kappa}(Y)} \int_{\substack{x \in \mathcal{L}_{\kappa}}} \frac{fec^{4}}{l_{\kappa}(Y)} \int_{\substack{x \in \mathcal{L}_{\kappa}}} \frac{l_{\kappa}(Y)}{l_{\kappa}(Y)} \int_{\substack{x \in \mathcal{L}_{\kappa}}} \frac{fec^{4}}{l_{\kappa}(Y)} \int_{\substack{x \in \mathcal{L}_{\kappa}}} \frac{fec^{4}}{$

The Thurston Metric
dy (X,Y) = log sup
$$\frac{l_x(Y)}{l_x(X)}$$
 fecd
 $e \log \inf_{x \ sc.c} ||Df|| = \int_{x} \int_{$

/

The Thurston Metric

$$d_{\mu}(x,Y) = \log \sup_{\substack{x \ scc}} \frac{l_{\mu}(Y)}{l_{\kappa}(x)} geodesic rep.$$

 $d_{\mu}(x,Y) = \log \sup_{\substack{x \ scc}} \frac{l_{\mu}(Y)}{l_{\kappa}(x)} geodesic rep.$
 $d_{\mu}(x,Y) = \log \inf_{\substack{x \ scc}} \frac{l_{\mu}(Y)}{l_{\kappa}(x)} fec^{4}$
 fec^{4}
 fec^{4}

Dec. 11, 2022 – Why the Thurston Metric is (Not) like L^∞

1

The Thurston Metric

$$d_{h}(x, Y) = \log \sup_{\substack{x \in c}} \frac{l_{a}(Y)}{l_{a}(x)} \stackrel{\text{length of}}{\text{geodesic rep.}} \int_{\substack{x \in c}} \frac{l_{a}(X)}{l_{a}(x)} \stackrel{\text{fec}}{\text{fec}} \int_{\substack{x \in c}} \frac{l_{a}(X)}{l_{a}(x)} \int_{\substack{x \in c}$$

Dec. 11, 2022 – Why the Thurston Metric is (Not) like L^∞

Geodesic Envelopes

Thurston 86: In is geodesic Eno(X,Y) W(X,Y) Env(x, y)
$$\begin{split} & (X,Y) = \sup_{t,y,y'} d_m \left(\mathcal{T}(t), \mathcal{T}'(t) \right) \\ & \quad t,y,y' \qquad paths from X to Y \end{split}$$

Dec. 11, 2022 – Why the Thurston Metric is (Not) like L^{∞}

Geodesic Envelopes

Thurston 86: In is geodesic ENO(X,Y) W(X,Y) Env(X,Y)
$$\begin{split} & (X,Y) = \sup_{t,y,y'} d_m \left(\mathcal{J}(t), \mathcal{J}'(t) \right) \\ & \quad t,y,y' \qquad \qquad paths from X to Y \end{split}$$
Thu (Dunas, Lenzhen, Raf, Tao '19) Egs where w(x, Y) -> 00

Stretch Paths

A lanination is a Hausdorff finit of closed curves

Stretch Paths

A lanination is a Hausdorff
limit of closed curves
"Sup
$$\frac{l_n(Y)}{l_n(x)}$$
 is realized on
a lanination $\Lambda(X,Y)$ "

Dec. 11, 2022 – Why the Thurston Metric is (Not) like L^∞

Stretch Paths

A lanination is a Housdorff
limit of closed curves
"Sup
$$\frac{l_n(Y)}{l_n(X)}$$
 is realized on
a lanination $\Lambda(X,Y)$ "
" $\Lambda(X,Y)$ big=>unique geodesic"
If $\omega(X,Y)=0$, the path from
X to Y is a Stretch path

d_{Th} is like L^{∞}

Dec. 11, 2022 – Why the Thurston Metric is (Not) like L^{∞}

 d_{Th} is like L^{∞}

v is a stretch vector if its the derivative of a stretch path Thm (B-N, '22) initial years X to hull sectors @X $E_{nv_o}(X,Y) = CH(SV_x)$

 d_{Th} is like L^{∞}

v is a stretch vector if its the derivative of a stretch path Thm (B-N, '22) initial realists X to hull sectors @X $E_{nv_o}(X,Y) = CH(SV_x)$ 51+ χ

d_{Th} is not like L^{∞}

Thn (B-N, 22) 0< 0r) (, JD>0 IF S = /For any $X, Y \in T(s)$ $W(x, Y) \leq D$

d_{Th} is not like L^{∞}

Thn (B-N, 22) 0< 0r) (, 3D>0 IF S = /For any $X, Y \in T(s)$ $W(x, Y) \leq D$ 4 D

Hopes and Dreams

Boundaries at Infinity

Vivian He

University of Toronto

December 2022

The Sublinearly Morse Boundary

Morse: invariant under quasi-isometry

Sublinear: random walks converge to the sublinearly Morse boundary

The Gromov Boundary

Definition

The Gromov boundary of a hyperbolic metric space X is the set $\partial X = \{ [\gamma] \mid \gamma \text{ is a geodesic ray } \}.$

The topology is generated by the following open neighbourhoods around $[\gamma]$:

$$U([\gamma], r) = \left\{ [\gamma'] \mid \liminf_{s,t \to \infty} (\gamma(s), \gamma'(t))_o \geq r \right\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● のへで

Definition

Let (X_1, d_1) and (X_2, d_2) be metric spaces. A function $f: X_1 \to X_2$ is a quasi-isometry if there exists constants $q \ge 1$ and $Q \ge 0$ such that for any two points $x, y \in X_1$,

$$\frac{1}{q}d_1(x,y)-Q\leq d_2(f(x),f(y))\leq qd_1(x,y)+Q.$$

Definition

Let (X_1, d_1) and (X_2, d_2) be metric spaces. A function $f: X_1 \to X_2$ is a quasi-isometry if there exists constants $q \ge 1$ and $Q \ge 0$ such that for any two points $x, y \in X_1$,

$$\frac{1}{q}d_1(x,y)-Q\leq d_2(f(x),f(y))\leq qd_1(x,y)+Q.$$

Theorem

Let X_1, X_2 be hyperbolic metric spaces, and let $f : X_1 \rightarrow X_2$ be a quasi-isometry. Then f induces a homeomorphism on the Gromov boundaries ∂X_1 and ∂X_2 .

Theorem (Morse lemma)

Let X be a hyperbolic space, and γ a (q, Q)-quasi-geodesic in X. Then there is a constant m(q, Q) such that γ is in the m(q, Q)-neighbourhood of the geodesic segment connecting its endpoints.

SQ Q

Theorem (Morse lemma)

Let X be a hyperbolic space, and γ a (q, Q)-quasi-geodesic in X. Then there is a constant m(q, Q) such that γ is in the m(q, Q)-neighbourhood of the geodesic segment connecting its endpoints.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

The Morse Boundary

Definition

A geodesic γ is *M*-Morse if any quasi-geodesics with endpoints on γ is contained in the *M*-nbhd γ .

Definition (Cashen-Mackay, Charney-Sultan, Cordes) The Morse boundary of a geodesic metric space X is the set $\partial X = \{ [\gamma] \mid \gamma \text{ is a } M$ -Morse (quasi-)geodesic ray for some $M \}$.

Theorem (Kaimanovich)

In a hyperbolic group G, almost all sample paths $\{x_n\}$ of the random walk (G, μ) converge to a (random) point in the Gromov boundary.

The Tree of Flats

Image by Alex Sisto

The Sublinearly Morse Boundary

Definition (Qing-Rafi-Tiozzo)

A quasi-geodesic γ is sublinearly Morse if every quasi-geodesic β with endpoints on γ is contained in the $M\kappa(|x|)$ -nbhd of γ , where M is a constant and κ is a sublinear function.

The Sublinearly Morse Boundary

Definition

The sublinearly Morse boundary of a geodesic metric space X is the set $\partial X = \{ [\gamma] \mid \gamma \text{ is a sublinearly Morse quasi-geodesic ray} \}.$

Theorem (H.)

The sublinearly Morse boundary contains the Morse boundary as a topological subspace.

Summary: Boundaries

	Gromov	Morse	Sublinearly
	Boundary	Boundary	Morse Boundary
Compact	\checkmark	X	×
Metrizable	✓	\checkmark	✓
Invariant Under	✓	✓	✓
Quasi-Isometries			
Random Walk	✓	×	✓
Converges			

Disk Configuration Spaces and Representation Stability

Nicholas Wawrykow University of Michigan

Disk Configuration Spaces

Definition

For a manifold X with metric g, the ordered configuration space of n open unit-diameter disks in (X, g) is

 $\{(x_1, \dots, x_n) \in (X, g)^n | d_g(x_i, x_j) \ge 1 \text{ and } \mathbb{D}_{\frac{1}{2}}(x_i) \subset (X, g) \}$
Disk Configuration Spaces

Definition

For a manifold X with metric g, the ordered configuration space of n open unit-diameter disks in (X,g) is $\{(x_1,\ldots,x_n)\in (X,g)^n|d_g(x_i,x_j)\geq 1 \text{ and } \mathbb{D}_{\frac{1}{2}}(x_i)\subset (X,g)\}$

• Unlike the ordered configuration space of points $F_n(X)$, geometry matters!

Disk Configuration Spaces

Definition

For a manifold X with metric g, the ordered configuration space of n open unit-diameter disks in (X, g) is

 $\left\{ (x_1, \dots, x_n) \in (X, g)^n | d_g(x_i, x_j) \ge 1 \text{ and } \mathbb{D}_{\frac{1}{2}}(x_i) \subset (X, g) \right\}$

- Unlike the ordered configuration space of points $F_n(X)$, geometry matters!
- Easiest interesting example: conf(n, w) the ordered configuration space of n open unit-diameter disks in the infinite Euclidean strip of width w

A point in conf(10,3)

• The symmetric group S_n acts on $\operatorname{conf}(n, w) \Rightarrow H_k(\operatorname{conf}(n, w))$ is an S_n -representation

- The symmetric group S_n acts on $\operatorname{conf}(n, w) \Rightarrow H_k(\operatorname{conf}(n, w))$ is an S_n -representation
- How does the S_n -representation $H_k(conf(n, w); \mathbb{Q})$ behave as n increases?

- The symmetric group S_n acts on $\operatorname{conf}(n, w) \Rightarrow H_k(\operatorname{conf}(n, w))$ is an S_n -representation
- How does the S_n -representation $H_k(\operatorname{conf}(n, w); \mathbb{Q})$ behave as n increases?
- First, what happens in the case of ordered configuration spaces of points?

- The symmetric group S_n acts on $\operatorname{conf}(n, w) \Rightarrow H_k(\operatorname{conf}(n, w))$ is an S_n -representation
- How does the S_n -representation $H_k(\operatorname{conf}(n, w); \mathbb{Q})$ behave as n increases?
- First, what happens in the case of ordered configuration spaces of points?

Theorem (Church–Ellenberg–Farb 12, Miller–Wilson 19) If X is a non-compact connected finite type manifold of dimension at least 2, then, for n > 2k, the decomposition of $H_k(F_n(X); \mathbb{Q})$ into a direct sum of irreducible S_n -representations is determined by the decomposition of $H_k(F_m(X); \mathbb{Q})$ into a direct sum of irreducible S_m -representations for every $m \leq 2k$.

• This is *representation stability*

Theorem (W. 22)

For $w \geq 2$ and n > 3k, upper bounds for the multiplicities of the irreducible S_n -representations in the direct sum decomposition of $H_k(\operatorname{conf}(n,w);\mathbb{Q})$ are determined by the multiplicities of the irreducible S_m -representations in the direct sum decomposition of $H_k(\operatorname{conf}(m,w);\mathbb{Q})$ for every $m \leq 3k$.

Theorem (W. 22)

For $w \geq 2$ and n > 3k, upper bounds for the multiplicities of the irreducible S_n -representations in the direct sum decomposition of $H_k(\operatorname{conf}(n,w);\mathbb{Q})$ are determined by the multiplicities of the irreducible S_m -representations in the direct sum decomposition of $H_k(\operatorname{conf}(m,w);\mathbb{Q})$ for every $m \leq 3k$.

Proof sketch:

• $H_*(conf(\bullet, w); \mathbb{Q})$ is a twisted algebra (Alpert-Manin 21)

Theorem (W. 22)

For $w \geq 2$ and n > 3k, upper bounds for the multiplicities of the irreducible S_n -representations in the direct sum decomposition of $H_k(\operatorname{conf}(n,w);\mathbb{Q})$ are determined by the multiplicities of the irreducible S_m -representations in the direct sum decomposition of $H_k(\operatorname{conf}(m,w);\mathbb{Q})$ for every $m \leq 3k$.

Proof sketch:

• $H_*(conf(\bullet, w); \mathbb{Q})$ is a twisted algebra (Alpert-Manin 21)

• Find a nice finite presentation

The Legendrian Unknot in a tight contact 3-manifold.

Eduardo Fernández (UGA)

Dec, 2022 Tech Topology

Joint work with J. Martínez-Aguinaga and Francisco Presas

Eduardo Fernández (UGA) The Legendrian Unknot in a tight contact 3-manifold.

- 4 回 ト - 4 三 ト - 4 三 ト

5900

Э

Theorem (Eliashberg-Fraser)

Two Legendrian unknots in a tight contact 3-manifold (M,ξ) are Legendrian isotopic iff they have the same tb and Rot. Even more, every Legendrian unknot is obtained by the unique Legendrian unknot $L^{(0,-1)}$ with Rot = 0 and tb = -1 by a finite sequence of stabilizations.

Figure: Eliashberg-Fraser Tartaglia Triangle.

□ ▶ ◀ ె ▶

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

The space of parametrized long Legendrian unknots.

Fix $(p, v) \in \mathbb{S}(\xi)$. Let $\mathfrak{Emb}_{(p,v)}(M)$ be the space of embeddings $\gamma : \mathbb{S}^1 \to M$ of long unknots into M; i.e. $(\gamma(0), \gamma'(0)) = (p, v)$. Let $\mathfrak{Leg}_{(p,v)}^{(r,t)}(M, \xi)$ be the subspace of $\mathfrak{Emb}_{(p,v)}(M)$ conformed by Legendrian unknots with $\operatorname{Rot} = r$ and tb = t. Do note that both spaces are connected.

Theorem (F, Martínez-Aguinaga, Presas. 20/21)

If (M,ξ) is tight and (|r|,t) = (-1-t,t) then the natural inclusion

$$\mathfrak{Leg}_{(p,v)}^{(r,t)}(M,\xi) \hookrightarrow \mathfrak{Emb}_{(p,v)}(M)$$

is a homotopy equivalence.

Corollary

The space of parametrized Legendrian unknots with tb = -1 in $(\mathbb{S}^3, \xi_{std})$ is homotopy equivalent to the space of parametrized Legendrian great circles U(2).

The space of smooth parametrized unknots in \mathbb{S}^3 is homotopy equivalent to the space of parametrized great circles $V_{4,2}$ (Hatcher, Smale Conjecture).

<ロト < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = >

SQ (~

Let $\mathfrak{Emb}(\mathbb{D}^2, M)$ be the space of smooth embeddings of disks that are fixed near the boundary bounding a Legendrian unknot with (Rot, tb) = (r, t)and $\mathfrak{Emb}_{\mathrm{std}}^{(r,t)}(\mathbb{D}^2, (M, \xi))$ be the subspace of convex disks with fixed characteristic foliation (pick your favourite one). There is a commutative diagram

in which the horizontal arrows are h.e.

- ◆ □ ▶ - ◆ □ ▶ - ◆ □ ▶

We are reduced to check that $\mathfrak{Emb}_{\mathrm{std}}^{(r,t)}(\mathbb{D}^2, (M,\xi)) \hookrightarrow \mathfrak{Emb}(\mathbb{D}^2, M)$ is a h.e.

- The condition on (r, t) that we have imposed imply that the inclusion is **dense**.
- Locally (in a tubular neighbourhood of a smooth disk) the problem is solved as a consequence of Eliashberg-Mishachev and Hatcher works.
- To globalize we build a **microfibration** with fiber the space of isotopies joining a smooth disk with a convex one in a tubular neighbourhood of the smooth disk. The fiber is $\neq \emptyset$ because of the density property and contractible. Therefore, we have a fibration with contractible fiber.

▲□▶ ▲□▶ ▲□▶ ▲□▶

Thanks for listening!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

5900

Ethan Dlugie UC Berkeley (a)

Tech Topology December 11, 2022

It's a representation of braid groups $B_n: B_n \rightarrow GL_{n-1}(Z[t^{\pm}])$

Via

$$\beta_n(\sigma;) = \prod_{i=2}^{i} \bigoplus \begin{pmatrix} 1 & 0 & 0 \\ t & -t & i \\ 0 & 0 & i \end{pmatrix} \bigoplus \prod_{n=1-2}^{i=2} \bigoplus \begin{pmatrix} 1 & 0 & 0 \\ t & -t & i \\ 0 & 0 & i \end{pmatrix}$$

The Burau	repres	entation	$n \beta_n$:	$B_n \rightarrow$	GL n-1	(Z[t [±]]
Qu	lestion		s it	faithf	w ?	
n	2	3	4	5	6	s 5 o
faithful?	yes	yes				

The Burau	repres	entation	$n \beta_n$:	$B_n \rightarrow$	GLn-1	(Z[t [±]]					
Question: Is it faithful?											
N	2	3	4	5	6	3 5 6					
faithful?	yes	yes		no	NO	• • •					
				R	90						

Bigelow '99

The Burau representation $\beta_n : B_n \to GL_{n-1}(\mathbb{Z}[t^{\pm}])$

Open Question: IS By faithful?

The Burau representation Bn: Bn -> GLn-, (Z[t±])

Open Question: IS By faithful?

Thm (Ito 14) If $\ker \beta_4 \neq 0$, then Jones Polynomial does not detect the unknot.

Theorem^{*} (Dlugie)
ker
$$\beta_{11} \leq \langle \langle \sigma_i d \rangle \rangle$$
 for $d = 5, 6, 8$
and
ker $\beta_{11} \leq \langle \langle \Delta^2, \sigma_i d \rangle \rangle$ for $d = 7, 10, 12, 18$
where $\Delta^2 = full twist$

* Thanks to Nancy Schenich for helpful conversations!

Theorem (Dlugie)

$$ker \beta_{11} \leq \langle \langle \sigma_i^{d} \rangle \rangle \text{ for } d = 5, 6, 8$$
and
$$ker \beta_{11} \leq \langle \langle \Delta^2, \sigma_i^{d} \rangle \rangle \text{ for } d = 7, 10, 12, 18$$
where $\Delta^2 = \text{ full twist}$

Proof method uses Thurston's moduli space of flat cone spheres

Proof method uses Thurston's moduli space of flat cone spheres //Example Ker $\beta_6 \leq \langle \langle \sigma_i^{+} \rangle \rangle$

Example Ker B6 ≤ KO; 4>>

Theorem (Dlugie)
Ker
$$\beta_{L1} \leq \langle \langle \sigma_i d \rangle \rangle$$
 for $d = 5, 6, 8$
and
Ker $\beta_{L1} \leq \langle \langle \Delta^2, \sigma_i d \rangle \rangle$ for $d = 7, 10, 12, 18$
where $\Delta^2 =$ full twist
Ryan Stees (Indiana U.) 2022 Tech Topology Conference

Milnor ('57):
LCS³ ~>
$$\overline{\mu}(x) \in \mathbb{Z}$$

"Higher-order linking numbers"

D. Miller (195) Heck (11) Kurtary (19) Cha-Orr (120) I Milnor's invariants for knots and links in closed orientable 3-manifolds

THM. (Milnor, '57) Let
$$L \subset S^3$$
, and suppose there is an isomorphism
 $\phi: \pi(E_L)/\pi(E_L)_n \xrightarrow{\simeq} \pi(E_U)/\pi(E_U)_n$. Then TFAE:
() $\overline{\mu}(\text{length } n) = O$.
(2) $\pi(E_L)/\pi(E_L)_{n+1} \cong \pi(E_U)/\pi(E_U)_{n+1}$
(3) $\overline{\mu}(\text{length } n+1)$ are well-defined.

THM. (Milnor, '57) Let
$$L \subset S^3$$
, and suppose there is an isomorphism
 $\phi: \pi(E_L)/\pi_1(E_L)_n \xrightarrow{\simeq} \pi_1(E_U)/\pi_1(E_U)_n$. Then TFAE:
() $\overline{p}(\text{length } n) = O$.
(2) $\pi(E_L)/\pi_1(E_L)_{n+1} \cong \pi_1(E_U)/\pi_1(E_U)_{n+1}$
(3) $\overline{p}(\text{length } n+1)$ are well-defined.

THM.
$$(S., 22)$$
 Fix LCM. Let $L' \subset M$, and suppose there is an isomorphism $\phi: \pi_1(E_{L'})/\Gamma(L')_n \cong \pi_1(E_{L'})/\Gamma(L)_n$. Then there exist invariants $\overline{\mu}_n$ such that TFAE:

()
$$\overline{P}_{n}(L') = \overline{P}_{n}(L)$$
.
(2) $\pi_{l}(E_{L'})/\Gamma(L')_{n+l} \xrightarrow{\simeq} \pi_{l}(E_{L})/\Gamma(L)_{n+l}$
(3) $\overline{P}_{n+l}(L')$ is well-defined.

THM. (S., '22) Fix LCM. Let $L' \subset M$, and suppose there is an isomorphism $\phi: \pi_1(E_{L'})/\Gamma(L')_n \cong \pi_1(E_{L})/\Gamma(L)_n$. Then there exist invariants $\overline{\mu}_n$ such that TFAE:

()
$$\overline{\mu}_{n}(L') = \overline{\mu}_{n}(L)$$
.
(2) $\pi_{l}(E_{L'})/\Gamma(L')_{n+1} \xrightarrow{\simeq} \pi_{l}(E_{L})/\Gamma(L)_{n+1}$
(3) $\overline{\mu}_{n+1}(L')$ is well-defined.

THM. (S., '22) Fix LCM. Let $L' \subset M$, and suppose there is an isomorphism $\phi: \pi_1(E_{L'})/\Gamma(L')_n \cong \pi_1(E_{L'})/\Gamma(L)_n$. Then there exist invariants $\overline{\mu}_n$ such that TFAE:

()
$$\overline{\mu}_{n}(L') = \overline{\mu}_{n}(L)$$
.
(2) $\pi_{l}(E_{L'})/\Gamma(L')_{n+1} \xrightarrow{\simeq} \pi_{l}(E_{L})/\Gamma(L)_{n+1}$
(3) $\overline{\mu}_{n+1}(L')$ is well-defined.

THM.
$$(S., '22)$$
 Fix LCM. Let $L' \subset M$, and suppose there is an isomorphism $\phi: \pi_i(E_{L'})/\Gamma(L')_n \cong \pi_i(E_{L'})/\Gamma(L)_n$. Then there exist invariants $\overline{\mu}_n$ such that TFAE:

$$\begin{array}{c} \hline & \overline{P}_{n}(L') = \overline{P}_{n}(L) \, . \\ \hline & \hline & \overline{T}_{1}(E_{L'}) / \Gamma(L')_{n+1} \xrightarrow{\simeq} \overline{T}_{1}(E_{L}) / \Gamma(L)_{n+1} \\ \hline & \hline & \hline & \hline & \hline & \hline & \\ \hline & \hline & \overline{P}_{n+1}(L') \ is \ well-defined \, . \end{array}$$

• Recovers Milnor's classical pi-invariants for LCS3 (Or 189)

THM.
$$(S., '22)$$
 Fix LCM. Let $L' \subset M$, and suppose there is an isomorphism $\phi: \pi_i(E_{L'})/\Gamma(L')_n \xrightarrow{\simeq} \pi_i(E_{L'})/\Gamma(L)_n$. Then there exist invariants $\overline{\mu}_n$ such that TFAE:

- Recovers Milnor's classical M-invariants for LCS3 (Or 189)
- · Can be nontrivial for knots in M = 5³

THM. (S., '22) Fix LCM. Let
$$L' \subset M$$
, and suppose there is an isomorphism
 $\phi: \pi_1(E_U)/\Gamma(U)_n \cong \pi_1(E_U)/\Gamma(U)_n$. Then there exist invariants $\overline{\mu}_n$
such that TFAE:
 $(1) \overline{\mu}_n(L') = \overline{\mu}_n(L)$.
 $(2) \pi_1(E_U)/\Gamma(U)_{n+1} \cong \pi_1(E_U)/\Gamma(U)_{n+1}$
 $(3) \overline{\mu}_{n+1}(L')$ is well-defined.

- Recovers Milnor's classical pi-invariants for LCS3 (Or 189)
- · Can be nontrivial for knots in M = 53

THM. (S., '22) Fix LCM. Let L'CM', and suppose there is an isomorphism

$$\phi: \pi_i(E_{U'})/\Gamma(U')_n \cong \pi_i(E_U)/\Gamma(U)_n$$
. Then there exist invariants $\overline{\mu}_n$
such that TFAE:
 $\widehat{\Gamma}_n(L') = \overline{\mu}_n(L)$.
(2) $\pi_i(E_U)/\Gamma(U')_{n+1} \cong \pi_i(E_U)/\Gamma(U)_{n+1}$
(3) $\overline{\mu}_{n+1}(L')$ is well-defined.

- Recovers Milnor's classical pi-invariants for LCS3 (Or 189)
- · Can be nontrivial for knots in M = 5³

THM. (S., '22) Fix LCM. Let
$$L' \subset M'$$
, and suppose there is an isomorphism
 $\phi: \pi_i(E_{U'})/\Gamma(U')_n \cong \pi_i(E_U)/\Gamma(U)_n$. Then there exist invariants $\overline{\mu}_n$
such that TFAE:
 $\widehat{\mu}_n(L') = \overline{\mu}_n(L)$.
(2) $\pi_i(E_U)/\Gamma(U)_{n+1} \cong \pi_i(E_U)/\Gamma(U)_{n+1}$
(3) $\overline{\mu}_{n+1}(L')$ is well-defined.

- Recovers Milnor's classical M-invariants for LCS3 (Or 189)
- · Can be nontrivial for knots in M = 53
- Can be defined for empty links Minut of Hx-cob. of 3-mfld. (Cha-Orr 120)

Automorphisms of the fine 1-curve graph

Roberta Shapiro Joint with K. W. Booth & D. Minahan Tech Topology Conference 2022

Goal:

Surface ⇔ graph

Main Theorem:

Homeo(Surface) ⇔ Aut(graph)

Fine curve graph: $C^{\dagger}(S)$

Fine curve graph: $C^{\dagger}(S)$

Vertices: curves

Vertices: curves Edges: disjointness

(Bowden-Hensel-Webb)

Fine 1-curve graph: $\mathcal{C}_1^{\dagger}(S)$

Vertices: curves Edges: disjointness or intersect once

Fine 1-curve graph: $\mathcal{C}_1^{\dagger}(S)$

Vertices: curves Edges: disjointness or intersect once

Natural map:

Homeo(S) \rightarrow Aut $\left(\mathcal{C}_1^{\dagger}(S)\right)$

Natural map:

Homeo(S)
$$\rightarrow$$
 Aut $\left(\mathcal{C}_{1}^{\dagger}(S)\right)$
Homeo(S) $\stackrel{?}{\leftarrow}$ Aut $\left(\mathcal{C}_{1}^{\dagger}(S)\right)$
Main Theorem (Booth-Minahan-S.)

S = closed, oriented surface, genus \geq 1. Then, the natural map

is an isomorphism.

Similar theorem: Le Roux-Wolff

Proof outline, g > 1 \bigvee Long-Margalit-Pham- \bigvee Verberne-Yao $\xrightarrow{}$ $Aut(C^{\dagger}(S)) \xrightarrow{}$ Homeo(S)

Proof outline, g > 1 $\operatorname{Aut}(\mathcal{C}_{1}^{\dagger}(S)) \to \operatorname{Aut}(\mathcal{C}^{\dagger}(S)) \xrightarrow{\operatorname{Long-Margalit-Pham-}}_{\operatorname{Verberne-Yao}} \operatorname{Homeo}(S)$

Main idea: look at graph structures surrounding the pair of curves

Steps: distinguish...

1. separating curves

Steps: distinguish...

1. separating curves

Steps: distinguish...

- 1. separating curves
- isotopy classes of separating curves

Steps: distinguish...

- 1. separating curves
- isotopy classes of separating curves

Only separating curves

Steps: distinguish...

- 1. separating curves
- isotopy classes of separating curves
- 3. crossing curves

Exists a special isotopy class of separating curves

Proof outline, g > 1

$$\operatorname{Aut}\left(\mathcal{C}_{1}^{\dagger}(S)\right) \longrightarrow \operatorname{Aut}\left(\mathcal{C}^{\dagger}(S)\right) \xrightarrow{\cong} \operatorname{Homeo}(S)$$

Thank you!

