A non-linear homogenization problem motivated by composites

Guillermo Goldsztein
School of Mathematics
Georgia Institute of Technology

December 19, 2017

Composites

Two pure solid phases bounded together. The inclusions, dark, inside the matrix, light.

The yield stress in the dark region is much larger than the yield stress in the light region.

The dark material is much stronger than the light material.

The toy mathematical problem

$$
Y_{\mathbf{x}}= \begin{cases}Y_{i} & \text { if } \mathrm{x} \text { in inclusion } \\ Y_{m} & \text { if } \mathrm{x} \text { in matrix }\end{cases}
$$

Notation: $Q=[0,1]^{2}$.
$\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is admissible if it is Q-periodic; $|\sigma(\mathbf{x})| \leq Y_{\mathbf{x}} ; \nabla \cdot \sigma=0$.
Notation: If β is Q-periodic, then $\langle\beta\rangle=\int_{Q} \beta$.

$$
K_{\text {hom }}=\{\tau=\langle\sigma\rangle: \sigma \text { admissible }\}
$$

Goal: Find the set $K_{\text {hom }}$.
Obs: $K_{\text {hom }}$ is convex.

Observations

Obs 1: $K_{\text {hom }}$ depends on the function $Y_{\mathbf{x}}$. The geometry, Y_{i} and Y_{m}.

Obs 2: $K_{\text {hom }}$ represent the forces the composite can withstand.
Def: \hat{n} unit vector. Strength in the direction $\widehat{n}=\sup \{\rho: \rho \hat{n} \in$ $\left.K_{\text {hom }}\right\}$

Obs 3: We want to reinforce a weak matrix with strong inclusions, $Y_{i} \gg Y_{m}$, to get a composite strong in all directions, i.e. $K_{\text {hom }}$ to contain ball of radius Y, where $Y \gg Y_{m}$.

Obs 4: σ can be regarded as the velocity field of an incompressible fluid of constant density. Fluid can flow fast inside the inclusions, but must flow slow in the matrix

A bound on the weakest direction

$\rho^{\star}=\max \left\{\rho: B_{\rho} \subseteq K_{\text {hom }}\right\}$ (strength in the weakest direction).
$\nu=$ area occupied by inclusions in $[0,1]^{2}$ (volume fraction of inclusions).
I inclusion, then $p_{I}=$ perimeter of I and $a_{I}=$ area of I.
$\rho^{\star} \leq Y_{m} \sqrt{\nu \eta+1-\nu}, \quad$ where $\quad \eta=\frac{1}{2} \max \left\{\frac{p_{I}^{2}}{a_{I}}: I\right.$ inclusion $\}$.

Obs: The bound seems to be pretty sharp

Observations on the bound

If I is a circular inclusion with radius R, then $p_{I}=2 \pi R, a_{I}=\pi R^{2}$. Thus, if all the inclusions are circular, $\eta=2 \pi$ and the bound gives

$$
\rho^{\star} \leq Y_{m} \sqrt{\nu 2 \pi+1-\nu}
$$

Circular inclusions can not reinforce much.

If I is rectangular with width w and length ℓ, then $p_{I}=2(w+\ell)$, $a_{I}=w \ell$. If all the inclusions are rectangular with the same length to width ratio, then $\eta \sim 2 \ell / w$ and the bound gives

$$
\rho^{\star} \leq Y_{m} \sqrt{\nu 2 \frac{\ell}{w}+1-\nu} \sim Y_{m} \sqrt{\nu 2 \frac{\ell}{w}}
$$

Slender inclusions can reinforce the matrix.

Proof of the bound

Notation: $v^{\perp}=\left(-v_{2}, v_{1}\right)$ (rotate $v \pi / 2$ counterclockwise)
Claim 1: Let σ and β be Q-periodic and divergence free. Then $\left\langle\sigma \cdot \beta^{\perp}\right\rangle=\langle\sigma\rangle \cdot\langle\beta\rangle^{\perp}$.
proof: $\sigma=\langle\sigma\rangle+(\nabla \phi)^{\perp}$ with ϕQ-periodic. $\beta=\langle\beta\rangle+(\nabla \psi)^{\perp}$ with ϕQ-periodic. Note $\int_{Q}\langle\sigma\rangle \cdot \nabla \psi=\int_{Q} \nabla \phi \cdot\langle\beta\rangle=0$

$$
\begin{gathered}
|Q|\left\langle\sigma \cdot \beta^{\perp}\right\rangle=\int_{Q} \sigma \cdot \beta^{\perp}=|Q|\langle\sigma\rangle \cdot\langle\beta\rangle^{\perp}-\int_{Q} \nabla \psi \cdot(\nabla \phi)^{\perp} \\
\int_{Q} \nabla \psi \cdot(\nabla \phi)^{\perp}=\int_{\partial Q} \psi \widehat{n} \cdot(\nabla \phi)^{\perp}=0
\end{gathered}
$$

Claim 2: Let I be and inclusion and σ and β admissible. Then $\left|\int_{I} \sigma \cdot \beta^{\perp}\right| \leq(1 / 2) Y_{m}^{2} p_{I}^{2}$.
proof: $\sigma=(\nabla \phi)^{\perp} ; \beta=(\nabla \psi)^{\perp} ; \widehat{t}=\widehat{n}^{\perp}$. Parametrize ∂I with $\mathrm{x}(s)$ so that $\left\|\mathbf{x}^{\prime}(s)\right\|=1$ and $\psi(0)=0$.

$$
\begin{array}{r}
\int_{I} \sigma \cdot \beta^{\perp}=-\int_{I} \nabla \psi \cdot(\nabla \phi)^{\perp}=-\int_{I} \nabla \cdot\left(\psi(\nabla \phi)^{\perp}\right)= \\
-\int_{\partial I} \hat{n} \cdot\left(\psi(\nabla \phi)^{\perp}\right)=\int_{\partial I} \psi \hat{t} \cdot \nabla \phi= \\
\int_{0}^{p} \mathrm{~d} s \hat{t}(s) \cdot \nabla \phi(s) \int_{0}^{s} \mathrm{~d} r \hat{t}(r) \cdot \nabla \psi(r)= \\
\int_{0}^{p} \mathrm{~d} s \hat{n}(s) \cdot \sigma(s) \int_{0}^{s} \mathrm{~d} r \hat{n}(r) \cdot \beta(r) \\
\left|\int_{I} \sigma \cdot \beta^{\perp}\right| \leq \int_{0}^{p} \mathrm{~d} s Y_{m}^{2} s=\frac{1}{2} Y_{m}^{2} p^{2}
\end{array}
$$

Claim 3: σ and β admissible. Then $\langle\sigma\rangle \cdot\langle\beta\rangle^{\perp} \leq(1-\nu) Y_{m}^{2}+$ $|Q|^{-1}(1 / 2) Y_{m}^{2} \sum_{I} p_{I}^{2}$. (Sum over one I per period cell).

Claim 4: Let $\eta=(1 / 2) \max _{I}\left\{p_{I}^{2} / a_{I}\right\} . \sigma$ and β admissible. Then $\langle\sigma\rangle \cdot\langle\beta\rangle^{\perp} \leq(1-\nu) Y_{m}^{2}+Y_{m}^{2} \nu \eta$.

Claim 5: Select $\sigma=\rho^{\star}(1,0)$ and $\beta=\rho^{\star}(0,-1)$. Then $\rho^{\star} \leq$ $Y_{m} \sqrt{(1-\nu)+\nu \eta}$

Flow across curves and bound on $K_{\text {hom }}$

If \mathcal{C} included in matrix then,

$$
\left|\langle\sigma\rangle \cdot \mathbf{z}^{\perp}\right|=\left|\int_{\mathcal{C}} \sigma \cdot \hat{n}\right| \leq Y_{m} \times \text { length of } \mathcal{C},
$$

for all σ admissible

Circular rigid inclusions $\left(Y_{i} \gg Y_{m}\right)$ can not reinforce much

No matter how hard are the inclusion, the yield stress is limited by the strength of the matrix.

Example 2. Thin Iong rectangular rigid inclusions.

Same example 2. Flow showing that the bound is sharp

Flow in one and four quarter inclusions

$$
\alpha=Y_{m} \quad \text { and } \quad \beta \approx \frac{\ell}{w} Y_{m}
$$

Same example 2. Flow showing that the bound is sharp

\mathbf{e}_{1}
where $\left\|\mathbf{e}_{1}\right\|=1$. Then

$$
\tau=\langle\sigma\rangle \approx \frac{\ell}{2 w} Y_{m} \mathbf{e}_{1}
$$

Same example 2. The weakest direction

$$
K_{\mathrm{hom}} \cdot \mathbf{e}_{2} \subseteq\left[-Y_{m}, Y_{m}\right]
$$

The weakest direction is weak. No good.

A bound on the weakest direction

Bound: Let ρ^{\star} be the strengh in the weakest direction, i.e.

$$
\rho^{\star}=\max \left\{\rho: B_{\rho} \subseteq K_{\text {hom }}\right\} .
$$

$$
\rho^{\star} \leq O\left(Y_{m} \sqrt{\frac{\ell}{w}}\right) .
$$

Reinforcing a weak matrix to get a composite strong in all directions
Stripe made of example 2 composite

No flow reaches right end if $L \geq \frac{\ell}{2 w} W$

Using previous stripes to build composites

Inifinitly long stripe. Flow limited in perpendicular direction

Using finite length stripes.
Transfer of flow between them

Need large contact between stripes

Composite made with previous stripes. Strong in all directions

Flow transfer from same color stripes
Average flow $=\frac{Y_{m}}{2} \sqrt{\frac{\nu \ell}{2 w}}(1,1)$
$\nu=$ volume fraction of inclusions (can be made close to 1)

$$
K_{\text {hom }} \supseteq \frac{Y_{m}}{2} \sqrt{\frac{\nu \ell}{2 w}}[-1,1]^{2}
$$

Proof of the bound

Observation 1: $v^{\perp}=\left(-v_{2}, v_{1}\right)$. Let $\sigma^{(1)}$ and $\sigma^{(2)}$ be Q-periodic and divergence free. Then $\left\langle\sigma^{(1)} \cdot\left(\sigma^{(2)}\right)^{\perp}\right\rangle=\left\langle\sigma^{(1)}\right\rangle \cdot\left\langle\left(\sigma^{(2)}\right)^{\perp}\right\rangle$.

Observation 2: Let I be and inclusion and σ admissible. Let p_{I} be the perimeter of I. Then $\left|\int_{I} \sigma^{(1)} \cdot\left(\sigma^{(2)}\right)^{\perp}\right| \leq(1 / 2) Y_{m}^{2} p_{I}^{2}$.

Observation 3: $\left\langle\sigma^{(1)}\right\rangle \cdot\left\langle\left(\sigma^{(2)}\right)^{\perp}\right\rangle \leq(1-\nu) Y_{m}^{2}+|Q|^{-1}(1 / 2) Y_{m}^{2} \sum_{I} p_{I}^{2}$. Let $\eta=(1 / 2) \max _{I}\left\{p_{I}^{2} / a_{I}\right\}$. Then $\left\langle\sigma^{(1)}\right\rangle \cdot\left\langle\left(\sigma^{(2)}\right)^{\perp}\right\rangle \leq(1-\nu) Y_{m}^{2}+$ $Y_{m}^{2} \nu \eta$.

Observation 4: Select $\sigma^{(1)}=\rho^{\star}(1,0)$ and $\sigma^{(2)}=\rho^{\star}(0,-1)$. Then $\rho^{\star} \leq Y_{m} \sqrt{(1-\nu)+\nu \eta}$

Proof of Observation 1

Observation 1: $v^{\perp}=\left(-v_{2}, v_{1}\right)$. Let $\sigma^{(1)}$ and $\sigma^{(2)}$ be Q-periodic and divergence free. Then $\left\langle\sigma^{(1)} \cdot\left(\sigma^{(2)}\right)^{\perp}\right\rangle=\left\langle\sigma^{(1)}\right\rangle \cdot\left\langle\left(\sigma^{(2)}\right)^{\perp}\right\rangle$.
$\sigma^{(i)}=\tau^{(i)}+\left(\nabla \phi^{(i)}\right)^{\perp}$ with $\phi^{(i)} Q$-periodic. Note $\int_{Q} \tau^{(1)} \cdot \nabla \phi^{(2)}=0$

$$
\begin{gathered}
\int_{Q} \sigma^{(1)} \cdot\left(\sigma^{(2)}\right)^{\perp}=|Q| \tau^{(1)} \cdot\left(\tau^{(2)}\right)^{\perp}-\int_{Q} \nabla \phi^{(2)} \cdot\left(\nabla \phi^{(1)}\right)^{\perp} \\
\int_{Q} \nabla \phi^{(2)} \cdot\left(\nabla \phi^{(1)}\right)^{\perp}=\int_{\partial Q} \phi^{(2)} \widehat{n} \cdot\left(\nabla \phi^{(1)}\right)^{\perp}=0
\end{gathered}
$$

Proof of the Observation 2

Observation 2: Let I be and inclusion and σ admissible. Let p be the perimeter of I. Then $\left|\int_{I} \sigma^{(1)} \cdot\left(\sigma^{(2)}\right)^{\perp}\right| \leq(1 / 2) Y_{m}^{2} p^{2}$.
$\sigma^{(i)}=\left(\nabla \psi^{(i)}\right)^{\perp}$ and $\hat{t}=\hat{n}^{\perp}$. Parametrize ∂I with $\mathbf{x}(s)$ so that $\left\|\mathbf{x}^{\prime}(s)\right\|=1$ and $\psi^{(2)}(0)=0$.
$\int_{I} \sigma^{(1)} \cdot\left(\sigma^{(2)}\right)^{\perp}=-\int_{I} \nabla \psi^{(2)} \cdot\left(\nabla \psi^{(1)}\right)^{\perp}=-\int_{I} \nabla \cdot\left(\psi^{(2)}\left(\nabla \psi^{(1)}\right)^{\perp}\right)=$

$$
\begin{array}{r}
\int_{\partial I} \psi^{(2)} \hat{t} \cdot \nabla \psi^{(1)}=\int_{0}^{p} \mathrm{~d} s \hat{t}(s) \cdot \nabla \psi^{(1)}(s) \int_{0}^{s} \mathrm{~d} r \hat{t}(r) \cdot \nabla \psi^{(2)}(r)= \\
\int_{0}^{p} \mathrm{~d} s \hat{n}(s) \cdot \sigma^{(1)}(s) \int_{0}^{s} \mathrm{~d} r \hat{n}(r) \cdot \sigma^{(2)}(r)
\end{array}
$$

$$
\left|\int_{I} \sigma^{(1)} \cdot\left(\sigma^{(2)}\right)^{\perp}\right| \leq \int_{0}^{p} \mathrm{~d} s Y_{m}^{2} s=\frac{1}{2} Y_{m}^{2} p^{2}
$$

