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Abstract

We introduce a fast numerical method for the evaluation of the e�ective elastic energy in
martensitic polycrystals in two and three dimensions. The overall complexity of the method

is O�N � operations, where N is the number of component crystallites. Upper and lower
bounds on the energy are also presented which allow us to estimate the accuracy of the
numerical results. Our new three-dimensional computations and bounds for random

polycrystals, which are the ®rst ones available in the literature, provide substantial insights
on the behavior of polycrystalline martensites. They suggest that recoverable strains can be
much larger than those attainable with zero energy. 7 2000 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

We present a fast method for the evaluation of overall elastic energies in two-

and three-dimensional martensitic polycrystals. The basic component of our

method is an explicit solution for Eshelby-type problems on cubic elements. Fast

0022-5096/00/$ - see front matter 7 2000 Elsevier Science Ltd. All rights reserved.

PII: S0022 -5096 (99)00074 -5

Journal of the Mechanics and Physics of Solids

48 (2000) 1175±1201

www.elsevier.com/locate/jmps

* Corresponding author.



computation of the polycrystal energy results through a rapidly convergent
sequence of approximations which can, in fact, be interpreted as a generalization
of a class of upper bounds introduced recently. The overall complexity of the
method is O�N � operations, where N is the number of component crystallites. We
also present lower and upper bounds for the energy, giving additional insights on
the microscopic phenomena leading to the observed structural behavior. In
particular we establish that, for random polycrystals with cubic to orthorhombic
basic transformation strains, the overall energy increases cubically with the
departure from the zero energy set. Thus, large deformations can be
accommodated with very small energies, suggesting that applied strains would be
recoverable well beyond the zero energy set.

This paper is organized as follows:
In Section 2, we describe the polycrystals we consider and we derive a variety of

useful expressions for the e�ective energy. In Section 3 we describe our numerical
method, which is based on a convergent sequence of approximations of the
e�ective energy. In Section 4 we derive rigorous upper and lower bounds for a
class of model polycrystals. We conclude in Section 5, where we present our
numerical results and discuss di�erent features of the e�ective energy and its
bounds.

2. Overall elastic energy

2.1. Microgeometry, transformations and elastic properties

We consider two- and three-dimensional polycrystals P, consisting of a
collection of grains or crystallites G

P �
[
G2G

G:

The crystallographic orientation of a grain G is given by a proper rotation R �
R�G �: We take both grains and orientations to be random variables and we
assume that their corresponding statistical distributions are spatially
homogeneous, as described in Bruno et al. (1996).

Each grain can undergo a shape deforming phase transition leading to
associated deformations or transformation strains. The possible transformation
strains of a single crystal depend on the orientation of the underlying crystalline
lattice. More precisely, a single crystal whose orientation is given by a certain
rotation R of the reference crystal will exhibit transformation strains equal to
rotated versions, by the same rotation R, of those corresponding to the reference
con®guration. Thus calling

eT�0� � 0, eT�1�, . . . ,eT�k�
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the basic transformation strains (or variants) in a reference single crystal, the
corresponding variants in a rotated single crystal, with rotation matrix R, are
given by ReT�i �RT:

Most often, ®ne laminated microstructures are found as the form in which the
phase transition takes place within individual grains; in many cases, further, the
full sub-granular microstructure consists of a single ®ne laminate, perhaps of
multiple rank. In case all pair of variants are mutually compatible, we use the
convex hull of all variants as an approximation to the set of all possible averages
arising as observable laminated structures (Bhattacharya, 1993). For polycrystals
containing large grains, for which more complicated microstructures are possible,
our results can be interpreted as rigorous bounds on the overall energy.

As we said, we will consider two main examples, one in two dimensions and the
other in three dimensions. In our two-dimensional example we will assume purely
deviatoric transformation strains, for which the variants take the form

eT�1� �
�
a 0
0 ÿa

�
and eT�2� �

�ÿa 0
0 a

�
�1�

where a is a material constant. Our three-dimensional example, on the other hand,
will assume orthorhombic variants (in which all pairs are mutually compatible) of
the form

eT�1� �
24 a d 0
d a 0
0 0 b

35, eT�2� �
24 a ÿd 0
ÿd a 0
0 0 b

35, eT�3� �
24 a 0 d
0 b 0
d 0 a

35,

eT�4� �
24 a 0 ÿd
0 b 0
ÿd 0 a

35, eT�5� �
24 b 0 0
0 a d
0 d a

35,

eT�6� �
24 b 0 0
0 a ÿd
0 ÿd a

35 �2�

where b, a, d are material constants.
Our computations thus assume that the possible strains arising from phase

transitions within a single grain are given by rotation Ð according to the
crystallographic orientation of the grain Ð of the convex hull of the basic
variants, which, in the cases we will consider are given by Eqs. (1) and (2). We
will also assume isotropic sti�ness

cijkl � 2n
1ÿ 2n

mdijdkl � mdikdjl � mdildjk

with shear modulus m and Poisson's ratio n; and we will assume the elastic tensors
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of both phases to be equal. If we denote by R�x� the crystallographic orientation
of the grain containing x, in accordance with our assumptions on the
microstructure and texture, the set of admissible transformation strains is

ST �
�
Statistically spatially homogeneous tensors eT

	
� eT�x�:RT�x�eT�x�R�x� is a convex combination of the basic variants

�1� or �2�: �3�

2.2. The e�ective energy

The numerical method presented here is based on a decomposition

W �W1 �W2 �4�
of the overall elastic energy arising from an applied strain e0 and an admissible
distribution of transformation strains eT�x�, where

W1 � lim
h40

1

2jPj
�

P
s�1�ij

h
u
�1�
i, j ÿ eT�av�

ij

i
�5�

and

W2 � lim
h40

1

2jPj
�

P
s�2�ij

h
u
�2�
i, j ÿ

�
eT
ij ÿ eT�av�

ij

�i
: �6�

The limiting process limh40 in these equations corresponds to the small grain-size
limit; (see Bruno and Goldsztein, 2000a for details). Further

eT�av� � lim
h40

1

jPj
�

P
eT dx, �7�

u�1� and s�1� are given by

u
�1�
i � e0ijx j, �8�

s�1�ij � cijkl

�
u
�1�
k, l,ÿ eT�av�

k, l

�
; �9�

the displacement u�2� is the solution of the equations of elasticity under the
transformation strain�

eT�x� ÿ eT�av� if x 2 P
0 otherwise

: �10�

and vanishing boundary conditions at in®nity, and s�2� is the corresponding stress
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s�2�ij �

8><>:
cijkl

h
u
�2�
k, l ÿ

�
eT
k, l ÿ eT�av�

kl

�i
if x 2 P

cijklu
�2�
k, l otherwise

: �11�

The e�ective energy is the result of minimizing the elastic energy over all
admissible transformation strains

E � min
eT2ST

W�eT �: �12�

Our numerical method and upper bounds are based on explicit evaluations of the
quantities W1 and W2. Algebraic expressions for these quantities can be obtained
by direct evaluation of the expressions

W1 � 1

2
cijkl

�
e0ij ÿ eT�av�

ij

��
e0kl ÿ eT�av�

kl

�
�13�

W2 � 1

2jPjcijructskl
�

P

�
eT
ij�x� ÿ eT�av�

ij

�
� �

P
Grt, s�xÿ x 0 �

�
eT
kl
�x 0 � ÿ eT�av�

kl

�
dx 0

�
,u

dx� 1

2jPjcijkl�
P

�
eT
ij �x� ÿ eT�av�

ij

��
eT
kl�x� ÿ eT�av�

kl

�
dx �14�

which follow from consideration of the Green's tensor Grt and Eshelby integrals
(Bruno and Goldsztein, 2000a).

3. Numerical method

While one can use the methods described here to evaluate the overall energy of
general polycrystal, for simplicity we will restrict attention to polycrystals with a
simpli®ed grain structure in which (1) The crystallographic orientation of the
grains is a random variable with uniform probability distribution, (2) The
transformation strain is constant within each grain and it lies on the convex hull
of the basic martensite variants, and (3) the d-dimensional polycrystal P�d � 2, 3�
consists of a cubic array of N � nd cubic grains of the same size:

P � [G � �0, 1�d: �15�
Here, calling h � 1=n, the grains G are of the form

G � Gi1,...,id � �i1, . . . ,id�h� �0, h�d �16�
where ij are integers satisfying 0Ri1, . . . ,idRnÿ 1:
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For such a polycrystal the energy W2 is given by

W2 � lim
h40

W h
2

where, denoting by eT�G � the value of the transformation strain within the grain
G,W h

2 is de®ned as

W21Wh
2 �

X
G, H�P

1

2jPjcijructskl
" �

G

� �
H

Grt, s�xÿ x 0 � dx 0
�
,u

dx

#
�
eT
ij
�G� ÿ eT�av�

ij

��
eT
kl
�H� ÿ eT�av�

kl

�
�
X
G�P

1

2jPjcijkljGj
�
eT
ij
�G� ÿ eT�av�

ij

��
eT
kl
�G� ÿ eT�av�

kl

�
: �17�

Since the integrals in Eq. (17) can be computed analytically (Bruno and
Goldsztein, 2000a, 2000b), W h

2 can be evaluated explicitly. More precisely, we
have

Wh
2 � m

X
G, H�P

wGH
ijkl

�
eT
ij
�G� ÿ eT�av�

ij

��
eT
kl
�H� ÿ eT�av�

kl

�
�18�

where wGH
ijkl are explicit constants given by (Bruno and Goldsztein 2000a, 2000b).

We now introduce a sequence of approximations for the quantity Wh
2 of Eq.

(18) which, while maintaining accuracy, will allow us to reduce substantially the
complexity of our minimization problem. These truncations depend on the
statistics of the underlying ®eld of crystallographic orientations. They are
motivated by the analysis by Bruno et al. (1996) leading to upper bounds on the
overall energy. More precisely, we approximate W2 by W h, r

2

Wh
21Wh, r

2 � m
X

G, H � P
dist�G, H�<r

wGH
ijkl

�
eT
ij
�G� ÿ eT�av�

ij

��
eT
kl
�H� ÿ eT�av�

kl

�
�19�

where dist�G, H � � maxfjgi ÿ hijg if G � �g1, . . . ,gd �h� �0, h�d and
H � �h1, . . . ,hd �h� �0, h�d (Bruno and Goldsztein, 2000a, 2000b). We thus have,

W1W h, r �W1 �Wh, r
2 : �20�

Numerical evaluation of the e�ective energy (12) then results via solution of the
minimization problem

E1Eh, r � min
�
W h, r

ÿ�
eT�G�

��
:G � P

	
: �21�

This is a quadratic programming problem for �eT�G �� since W h, r is a convex
quadratic function and the set of admissible variables is a convex polygon. The
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minimum indicated in Eq. (21) can be e�ciently obtained through a rather simple
minimization method, whose remarkable performance in our context can be
understood as resulting from the fast decay of correlations. Our minimization
algorithm proceeds as follows: given a grain G, the strain energy Wh, r is
minimized with respect to the transformation strain eT�G � while the rest of the
transformation strains are held ®xed. (Note that eT�av� varies in the process of
minimization with respect to eT�G �:) This de®nes the new state of the
transformation strain eT�G �, which is used in all subsequent calculations. Using a
visiting schedule, the transformation strains of all the grains in the polycrystal are
updated once per iteration. (Our computations use a lexicographic visiting
schedule, but many other possibilities may be as e�cient.) A (small) number of
iterations of this process, ®nally, produces the minimum with the required
accuracy. Our numerical computations are presented in Section 5 and we refer the
reader to Bruno and Goldsztein (2000a and 2000b) for a detailed discussion of the
complexity and convergence properties of our method.

4. Upper and lower bounds

In addition to numerical calculations it is valuable to consider rigorous upper
and lower bounds for the energy, as they provide a degree of validation for the
numerics, and they constitute a source of useful intuition on the problem. (In this
regard we note, for example, that the numerical method we are presently
proposing resulted as a generalization of the upper bounds of Bruno et al. (1996)
and Smyshlyaev and Willis (1998)). Our derivation of lower bounds is based on a
new method; our upper bound, on the other hand, generalizes the results of Bruno
et al. (1996) and Smyshlyaev and Willis (1998) to the present non-rotationally-
symmetric microgeometry.

4.1. Lower bound

Our derivation of lower bounds is based on partition of the polycrystal into a
number of groups of grains. We thus divide the polycrystal P of Eq. (15) into
groups containing Ng � ndg grains. The total number of grains in the polycrystal
may not be divisible by Ng, but we can always cover almost all of the polycrystal's
body by using such groups. More speci®cally, we write

P � [
A2A

A �22�

where, calling

An1,...,nd � [
�n1�1�ngÿ1

i1�n1ng

� � � [
�nd�1�ngÿ1

id�ndng

Gi1,...,id , �23�

we have set
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A �
�
An1,...,nd :0Rn1, . . . ,nd <

n

ng

�
; �24�

see Fig. 1 and Eq. (16).
From Eq. (6) and denoting, for A 2A

WA � 1

2jAj
�
A

s�2�ij

h
u
�2�
i, j ÿ

�
eT
ij ÿ eT�av�

ij

�i
, �25�

we evidently have

W2r
X
A2A
jAjWA: �26�

Now, the quantities WA themselves can be bounded from below by the energy of
a corresponding traction free boundary value problem. Indeed, let ~v be the
solution of the equations

tij, j � 0

Fig. 1. A group of grains in the lower-bound decomposition of P; ng � 3 (two-dimensional example).
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tij � cijkl

h
~vk, l ÿ

�
eT
kl ÿ eT�av�

kl

�i
tij�x�n̂j�x� � 0, x 2 @A, �27�

where ~n is the normal to the boundary of A. Then, de®ning

FA � 1

2jAj
�
A

tij
h

~vi, j ÿ
�
eT
ij ÿ eT�av�

ij

�i
, �28�

we have

WArFA �29�
since the solution of the traction free problem minimizes the corresponding energy
integral. From Eqs. (26) and (29) we obtain the estimate

W �W1 �W2rW1 �
X
A2A
jAjFA, �30�

and thus

E � min
eT

Wrmin
eT

(
W1 �

X
A2A
jAjFA

)
: �31�

Clearly the quantity FA depends on the array of crystallographic orientations as
well as the distribution of transformation strains within the group A Ð which are
the ones prescribed by the overall distributions in the polycrystal. Based on the
convexity properties of FA as a function of the transformation strains for ®xed
crystallographic orientation, the minimization of the right-hand side of Eq. (31)
can be restricted to those distributions of transformation strains eT�x� which
depend solely on the crystallographic orientations of the group A containing x.
For example, in a two-dimensional con®guration the crystallographic orientations
of a group A are described by a vector ~y of angles, de®ning L by

L �W1 �
�
2

p

�Ng��
0,
p
2

�Ng
F

�
eT
ÿ
~y
�
,~y
�

dy1, . . . ,dyNg
, �32�

we have (Bruno and Goldsztein, 2000a)

ErL1 � min
eT�eT�~y�

L: �33�

The actual minimization indicated in Eq. (33) is quite cumbersome due to the
constraints on the maximum size of the transformation strains. This calculation
can be greatly simpli®ed, however, by performing the minimization over the linear
subspace of all strains obtained as arbitrary (non necessarily convex) linear
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combinations of the admissible transformation strains. This leads to the rigorous,
closed form lower bound L1: This bound depends on singular multidimensional
angular integrals which must be obtained numerically. The details of these
numerical calculations are non-trivial and signi®cant, (see Bruno and Goldsztein,
2000a). In the two-dimensional case they lead to our lower bound

L1 � 2m
1ÿ 2n

1

4

ÿ
e011 � e022

�2�m�c1 1
4

ÿ
e011 ÿ e022

�2�c2ÿe012�2�; �34�

the constants c1 and c2, which are closely related to the angular integrals
mentioned above, were obtained in Bruno and Goldsztein (2000a). (As it is clear
from our analysis, these constants depend on the number Ng of grains within each
group, naturally the constants (and therefore the bounds) converge as the number
Ng increases). Comparisons of the resulting lower bounds with an upper bound
and numerical evaluations of the energy are given in the following section.

As mentioned above, closed form expressions have only been obtained from this
general procedure through minimization over a subspace larger than the set of
admissible transformation strains. As shown by (Bruno and Goldsztein, 2000a),
for large values of the applied strains this procedure leads to poor estimates, and
it is therefore advantageous to use an elementary lower bound in this regime.
Such a bound can be obtained, quite simply, by neglecting the positive quantity
W2 in expression (4) prior to the minimization (12):

Er min
eT2ST

W1: �35�

(This bound is identical with the well known result which is obtained from
relaxation of the constraint of compatibility between grains. Indeed, W2 can be
made to vanish by using appropriate discontinuous displacements.) In the two-
dimensional case, for example, this procedure gives the elementary bound

ErL2 �

8>>><>>>:
2m

1ÿ 2n
�h0 �2 if 0Rd 0Ra

2

p

2m
1ÿ 2n

�h0 �2�2m
�
d 0 ÿ a

2

p

�2

if d 0ra
2

p

, �36�

where

h0 � 1

2

ÿ
e011 � e022

�
and

�d 0�2� 1

4

ÿ
e011 ÿ e022

�2�ÿe012�2: �37�
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4.2. Upper bound

We obtain an upper bound U through minimization of the energy over an
``uncorrelated'' subset T of ST, see Bruno et al. (1996). Our arguments follow
Bruno et al. (1996) and Smyshlyaev and Willis (1998); the details of our
calculations are not identical with the previous ones since the microgeometry we
consider does not satisfy the hypothesis of circular symmetry of Smyshlyaev and
Willis (1998). We will be brief and we refer the reader to Bruno and Goldsztein
(2000a), Bruno et al. (1996), Smyshlyaev and Willis (1998) for a more detailed
presentation.

Explicitly, we seek to minimize the energy over the set

T �
�
eT 2ST:eT�x�

depends only on the orientation of the grain containing x
	
, �38�

see Eq. (3), so that our upper bound is

U � min
eT2T

W: �39�

For distributions in T the transformation strains in di�erent grains are
statistically independent, and thus��

eT
ij
�G� ÿ eT�av�

ij

��
eT
kl
�H� ÿ eT�av�

kl

��
� 0 �40�

whenever G 6� H (where we have used the notation hfi for the ensemble average of
f ). Since by ergodicity, the strain energy W does not depend on the particular
realization under consideration, averaging over the ensemble of all possible
realizations and minimizing over T yields

U � min
eT2T

W � min
eT2T
hWi: �41�

In view of Eqs. (18), (40) and (41) the upper bound U can be written in terms of
single-grain integrals

U � min
eT2T

(
W1 � m

X
G�P

wGG
ijkl

�
eT
ij
�G� ÿ eT�av�

ij

��
eT
kl
�G� ÿ eT�av�

kl

�)
: �42�

Since this quantity depends on single grain energies only, it is possible to evaluate
U in closed form. Explicit closed form expression for U (for two-dimensional
examples) were given by Bruno et al. (1996), Smyshlyaev and Willis (1998) and,
for our particular microgeometry, by Bruno and Goldsztein (2000a). Note that
this upper bound U coincides with the approximation for the e�ective energy
introduced in Section 3 when the interaction of any two di�erent grains is
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neglected (i.e. r � 1)

U � lim
h40

Eh, 1:

Graphs comparing these bounds with numerical evaluations and lower bounds are
presented in the following section.

4.3. Classical Taylor upper bound

As a reference for comparisons, we will also compute the classical Taylor bound
(Taylor, 1938). This bound is the energy that would result if the elastic strain were
everywhere equal to the applied strain e0: Thus, if a crystallite has orientation R
with probability p�R�, the Taylor bound is given by

T �
X
R

cijkl
2

�
e0ij ÿ eT

ij
�R�

�ÿ
e0kl ÿ eT

kl
�R��p�R� �43�

where eT�R� is the transformation strain that minimizes the energy of a crystal of
orientation R, when the elastic strain is e0 throughout the crystal. The
computation of this bound is given in Appendix A, and the results obtained are
displayed in the next section.

5. Results

In this section, we present some of our numerical results and bounds for two-
and three-dimensional polycrystals. We thus discuss the characteristics of the
energy curves as functions of the applied strains (which seem specially interesting
in the three-dimensional case). As it happens, numerical results and bounds are
fully consistent with each other, and they demonstrate the robustness of our
numerical approach.

In what follows we display various quantities related to the homogenized energy
of polycrystals as a function of the magnitude e of a deviatoric applied strain. We
thus consider the computed values of the homogenized energy E itself, our upper
and lower bounds U, and L, and, for reference, the Taylor bound T and the
``Austenite Energy'' EA

EA � 1

2
cijkle0ije

0
kl,

which equals the energy that would be required to deform the polycrystal in the
absence of phase transitions. For de®niteness (and following Bruno et al., 1996)
we use the values m � 100 GPa and n � 0:25 for the elastic constants.

The size of the applied strain will be characterized by a parameter e: Examples
using deviatoric applied strains will be given both in the two- and three-
dimensional case; in two dimensions we take applied strains of the form
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e0 � e
�
1 0
0 ÿ1

�
�44�

while, in the three dimensions we will use

e0 � e

24ÿ2 0 0
0 1 0
0 0 1

35: �45�

The corresponding basic transformation strains (variants) are given by Eqs. (1)
and (2) with a � 0:02 and, in the three-dimensional case,

a � 0:0425, b � ÿ2a, d � 0:0194 �46�
corresponding to g 01 Cu-14Al-4Ni (see Otsuka and Shimizu, 1974).

The ranges of values of e used for the graphs give applied deviators covering
the interesting domain in which most of the phase transitions occur.

5.1. Two-dimensional examples

Let us consider the computed values for the homogenized energy E � E�e� in
Fig. 2. This curve exhibits two main ranges of quadratic behavior, small e and
large e, which are separated by an intermediate regime. More precisely, there is a
constant ce such that

E�e�1mcee2; �47�
for e small, and the second derivative of E�e� approaches the limiting value 4m as e
increases. We have obtained the value ce � 0:38 from our numerics.

It is easy to understand the mechanisms leading to the domains of quadratic
dependence. For small values of e none of the grains transforms to a single
variant but to a mixture. This is clearly demonstrated by the upper curves in
Fig. 3, which show the volume fraction V occupied by the grains transformed to a
single variant as a function of the applied strain. Within this regime both the
strains and transformation strains depend linearly on e since, as can be checked
easily the elasticity problem is linear in e as long as none of the grains in the
polycrystal have transformed into a single variant. Linearity of the strains
translates into quadratic behavior for the energy, as indicated in Eq. (47).

The bounds, also shown in Fig. 2, follow closely the numerical values of the
e�ective energy. Like the homogenized energy, the bounds exhibit two main
ranges of quadratic behavior, small e and large e, separated by an intermediate
nonlinear regime. Our lower bound is given by

L�e0� � max
�
L1
�e0�, L2

�e0�
	
, �48�

see Section 4 (The constants c1 and c2 in Eq. (34) depend on the number Ng � n2g
of grains within each group in our decomposition of the polycrystal; values for
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these constants can be found by Bruno and Goldsztein (2000a). Naturally, larger
values of Ng lead to sharper lower bounds on the energy.) As shown by Bruno
and Goldsztein (2000a), on the other hand, the upper bound is given by the
quadratic expression

U � mcue2 for eRe� �49�
where cu � 0:4974 and e� � a � 0:7047: For large values of e, ®nally, the curvature
of the upper bound approaches that of the linear elastic material.

A deeper connection between E and its upper bound U emerges as we consider
values of e of the same order or larger than a. For such large values of e, the
grains transform to one of the variants and not to a mixture of them, and the
choice of the one variant to be represented within any one grain depends mostly
on the orientation of the grain. This implies that, in this regime, transformation
strains from di�erent grains are very nearly independent from each other (since
the crystallographic orientations are independent) or, in other words, that the
correlations between transformation strains of di�erent grains are small. As a
result, the minimizing distribution of transformation strains for the energy is quite
close to the set of trial ®elds used in the derivation of the upper bound, and thus
upper bound and homogenized energy agree very closely.

Fig. 4. Microstructure in a 10 � 10 portion of a 1000 � 1000 polycrystal transformed under e � 0:005:
Lines indicate grains orientations, with lengths proportional to the magnitude of the corresponding

transformation strain.
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It is of interest in this context to consider Fig. 4, which gives the
crystallographic orientation and the transformation strains of a 10 � 10-grain
window within our 1000 � 1000-grain polycrystal. Here, we have taken e � 0:005;
we see that most of the transformation occurs on favorably oriented crystallites.

5.2. Three-dimensional examples

Let us now consider our three-dimensional polycrystal. If we denote by eT�G �
the transformation strain of the energy minimizing distribution in the grain G and
by R�G � the crystallographic orientation of the grain G, we have

eT�G� � R�G�
(X6

i�1
li�G�eT�i�

)
RT�G� �50�

for some li�G � satisfying li�G �r0 and
P6

i�1 li�G � � 1: The fact that the basic
variants feT�i �g generate the space of the deviatoric strains, implies that for e
smaller than a critical threshold e�, e0 given by Eq. (45) can be written as convex
combination of rotations of the basic variants by an arbitrary rotation
(Bhattacharya and Kohn, 1996). In other words, e0 can be written in the form (50)
for any grain G, and thus, the energy minimizing distribution of transformation
strains is given by eT�G � � e0 for all G (for which the elastic energy is 0). The
value of e� has been calculated in Appendix A (see Eq. (A11). Figs. 5 and 6 show
that for 0ReRe�, the homogenized energy, our upper bound and the Taylor
bound are exactly equal to zero. For e > e� the Taylor bound overestimates the
energy by 50±250% (the larger percent error occurring for small departures from
the zero energy set).

For e > e�, not all the rotations R will have the property that e0 can be written
as convex combination of fReT�i �RTg: In fact, for large enough values of e none of
the rotations will have this property. Thus, most of the grains G with
crystallographic orientation for which e0 can not be written in the form (50), will
transform to a transformation strain in the boundary of the convex hull of
fR�G �eT�i �RT�G �g in the attempt to be close to e0 to minimize the energy. This
implies that li�G � � 0 for some i in Eq. (50). In fact, for any grain G, the number
of li�G � which are equal to 0 in Eq. (50) increases with e until eventually only one
li�G � is equal to 1 and the rest of them are equal to 0 (i.e. the grain has
transformed into a single variant). This behavior is illustrated in Figs. 7 and 8
where we have plotted the volume fraction of the grains for which k of the li of
Eq. (50) are di�erent from 0 as a function of e for 1RkR6: As the number of
li�G � which are equal to 0 increases, the grain G has less room to deform through
phase transformation and thus, more elastic energy is required. As a consequence,
the curvature of the energy curve increases (compare Figs. 7 and 8 with Figs. 5
and 6).

We now turn our attention to values of e near e�: For e > e�, these curves
exhibit an asymptotic cubic behavior as e4e�: More precisely,
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E�e�1E0�eÿ e��3 as e4e�

U�e�1U0�eÿ e��3 as e4e�

T�e�1T0�eÿ e��3 as e4e�: �51�

Fig. 7. Volume fraction of grains transformed into a convex combination of k variants as a function of

e: The dotted line corresponds to the computations of the e�ective energy, the dashed line was obtained

with our upper bound and the solid line was obtained with the Taylor bound.

Fig. 8. Same as Fig. 7 for an expanded set of applied strains e:
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The asymptotic behavior of T and the calculation of T0 have been obtained
analytically in Appendix A (see Eqs. (A19) and (A20)). On the other hand, Eq.
(51) for the e�ective energy has been obtained numerically as follows:

We ®rst computed

Ei � E
ÿ
e� � 0:01� 2ÿi

�
�52�

for 0RiR6: If E has an asymptotic behavior of the form E�e�1E0�eÿ e��e, e can
be approximated by

e1ei � log�Ei=Ei�1�
log�2� : �53�

Table 1 clearly shows that ei is very close to 3. Having obtained the exponent
e � 3, E0 has been approximated by

E01E
�i�
0 �

Ei

�0:01� 2ÿi �3
: �54�

Table 2 contains the computed values of E
�i �
0 : The asymptotic behavior of the

upper bound was obtained similarly. More precisely, calling

Ui � U
ÿ
e� � 0:01� 2ÿi

�
, �55�

and assuming that U1U0�eÿ e��u, Table 1 contains

u1ui � log�Ui=Ui�1�
log�2� : �56�

Table 1

Computed exponents in the asymptotic behavior of the e�ective energy and upper bound near e�

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

ei 2.51 2.75 2.89 2.95 2.99 3.00

ui 2.46 2.66 2.80 2.89 2.95 2.98

Table 2

Computed prefactors (in 103 GPa) in the asymptotic behavior of the e�ective energy and upper bound

near e�

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

E
�i �
0 19 27 32 34 36 36

U
�i �
0 21 30 38 44 48 50
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Analogously, Table 2 contains the approximations for U0

U01U
�i�
0 �

Ui

�0:01� 2ÿi �3
: �57�
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Appendix A. Taylor bounds

This appendix contains the derivations of the two- and three-dimensional
Taylor bounds for applied strains of the form (44) and (45), respectively.
Although, as shown in Section 5, the Taylor bounds lead to substantial
overestimates of the energy, they do permit us to establish, without invoking
numerical computations, the super-quadratic dependence of the overall energy
discussed in Section 5.

A.1. Two-dimensional example

In our two-dimensional polycrystal, the possible transformation strains in a
grain whose orientation is a rotation by an angle y are given by

eT � lR
�
a 0
0 ÿa

�
, RT � la

�
cos�2y� sin�2y�
sin�2y� ÿcos�2y�

�
, �A1�

where ÿ1RlR1: A simple calculation shows that the energy W�y� of a crystal
with orientation y, transformation strain eT given by Eq. (A1) and applied strain
e0 given by Eq. (44) is

W�y� � cijkl
2

�
e0ij ÿ eT

ij

�ÿ
e0kl ÿ eT

kl

� � 2a2m
ÿ
l2 ÿ 2elcos�2y� � e2

�
: �A2�

Minimizing the above quantity over ÿ1RlR1 and taking average of the result
over all orientations y we obtain the Taylor bound
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T � T�e�

8><>:
me2 if eRa

m

�
1� 4

p
y0 � sin�4y0�

p

�
e2 � 8

p
m�y0 ÿ esin�2y0�� otherwise

, �A3�

where 0Ry0 < p=2 is the solution of ecos�2y0� � a:

A.2. Three-dimensional example

In our three-dimensional polycrystal, the possible transformation strains in a
grain with orientation R are given by

eT � R

(X6
i�1

lieT�i�
)
RT with lir0 and

X6
i�1

li � 1; �A4�

where eT�i � are given by Eq. (2). The elastic energy W of a single crystal with
constant transformation strain eT throughout the crystal under an applied strain e0

is

W � cijkl
2

�
e0ij ÿ eT

ij

�ÿ
e0kl ÿ eT

kl

�
: �A5�

We are interested in computing the Taylor bound when the applied strain is given
by Eq. (45). Thus, we ®rst have to minimize the elastic energy W (Eq. (A5)) over
the possible transformation strains given by Eq. (A4) with e0 of the form (45)

E � E�e, R� � min
eT

�
W:W is given by �A5�; eT by �A4� and e0 by �A5�

	
, �A6�

and then we need to take the average of the result over all possible orientations

T � T�e� �
X
R

E�e, R�p�R�: �A7�

In this last equation p�R� is the probability that the orientation of any grain G is
R, which in the examples considered here corresponds to the uniform probability
distribution.

The minimization in Eq. (A6) is a quadratic programming problem. Unlike our
two-dimensional example, we can not carry out this minimization explicitly. We
thus solve Eq. (A6) numerically and then, perform the integration in Eq. (A7) also
numerically. The resulting curve T � T�e� is displayed in Section 5.

A.2.1. Strains attainable with small Taylor energy
Since the basic variants in our three-dimensional example (see Eq. (2)) generate

the space of deviatoric strains, there exists an e� such that T�e� � 0 whenever
0ReRe� (Bhattacharya and Kohn, 1996). We will next compute e� and the
asymptotic behavior of T when eÿ e� is positive and small.
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A.2.1.1. Calculation of e�. It can be inferred immediately from Eqs. (A4)±(A7) that
T�e� � 0 if and only if e0 can be written as convex combination of the rotated
basic variants (2)

e0 � e

24ÿ2 0 0
0 1 0
0 0 1

35 � R

(X6
i�1

lieT�i�
)
RT

with li � li�R�r0 and
X6
i�1

li � 1

�A8�

for all rotations R. Solving Eq. (A8) for li as functions of R and e and denoting
by ni the (1, i )th component of R (i.e. ni � r1i), we ®nd that

l1 � e
6a
�3n3n3 ÿ 1� ÿ 3e

2d
n1n2 � 1

6

l2 � e
6a
�3n3n3 ÿ 1� � 3e

2d
n1n2 � 1

6

l3 � e
6a
�3n2n2 ÿ 1� ÿ 3e

2d
n1n3 � 1

6

l4 � e
6a
�3n2n2 ÿ 1� � 3e

2d
n1n3 � 1

6

l5 � e
6a
�3n1n1 ÿ 1� ÿ 3e

2d
n2n2 � 1

6

l6 � e
6a
�3n1n1 ÿ 1� � 3e

2d
n2n2 � 1

6
: �A9�

Thus T�e� � 0 if li given by Eq. (A9) is positive for all i and all vectors n̂ �
�n1, n2, n3� of norm 1 (i.e. jn̂j2 � n21 � n22 � n23 � 1).

Due to symmetry, it is enough to consider only one of the equalities in Eq. (A9)
to compute e�: We choose the ®fth equation. We thus regard l5 as a function of e
and n̂ given by Eq. (A9), l5 � l5�e, n̂�: If e is held ®xed, l5 attains its minimum
when

n̂ � n̂� �
�
0,

1���
2
p ,

1���
2
p

�
and n̂ � ÿn̂� �

�
0, ÿ 1���

2
p , ÿ 1���

2
p

�
: �A10�

Since e� is the value of e that makes this minimum equal to 0, solving l5�e�, n̂���0
we ®nd that
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e� � 2ad
2d� 9a

� 0:00391407548: �A11�

A.2.1.2. Behavior of T near e�. We now turn to the study of the behavior of T
near e�: We ®rst note that

RT

24ÿ2 0 0
0 1 0
0 0 1

35R � Iÿ 3n̂
 n̂ �A12�

where n̂ is the ®rst row of the matrix R and n̂
 n̂ is the matrix that results from
the tensor product of n̂ with itself (i.e. �n̂
 n̂�ij � ninj). As a consequence, it can be
seen that E de®ned in Eq. (A6) depends only on e and n̂: We then write E � E�e,
R� � E�e, n̂�: Given that we are considering the case in which the orientations are
random variables with uniform probability distributions, we parametrize n̂ by

n̂ � n̂�y, b� � �cos y cos b, sin y cos b, sin b� �A13�
with ÿpRy < p and ÿp

2RbRp
2 ; and density probability distribution given by

f�y, b� � cos b
4p

: �A14�

We thus also write E � E�e, n̂��E�e, y, b�: Analgously, we regard li de®ned in Eq.
(A9) as a function of e, y and b�li�li�e, n̂��li�e, y, b��:

The ®rst step in the evaluation of E is to de®ne �e� �e�y, b� as the maximum e
such that e0 is a convex combination of the rotated basic variants by a rotation R
whose ®rst row is n̂�y, b�: This is equivalent to

�e�y, b� � max
�
e:li�e, y, b�r0 for all i

	 �A15�
(see Eq. (A9)). For example, noting that n̂� � n̂�p2 , p

4 � and recalling how we have
obtained e�, we have �e�p2 , p

4 � � e�: In fact, for �y, b� near �p2 , p
4 ), �e is given by the

solution of the equation l5�e, y, b� � 0: Thus, solving this last equation,
expanding l5 around �e, y, b� � �e�, p

2 ,
p
4 � we get

�e � �e�y, b�1e� � 9�e��2
(
2d� 3a
12ad

�
yÿ p

2

�2

�1
d

�
bÿ p

4

�2
)

as

�y, b�4
�
p
2
,
p
2

�
:

�A16�

Let us now compute E�e� �D, y, b� with D small and positive. We ®rst note that
E�e� � D, y, b� � 0 whenever �e�y, b�re� � D: Recall that l5�e�, n̂� � 0 for two
di�erent vectors n̂ � n̂� and n̂ � ÿn̂� (see Eqs. (A9) and (A10)). Analogously, for
each li, there is a pair of vectors n̂�i� and ÿn̂�i � such that li�e�, n̂� � 0 if n̂ � n̂�i �
or n̂ � ÿn̂�i �: Since all these vectors are di�erent, we conclude that there are 12
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di�erent pairs �yi, bi� (one of them being �p2 , p
4 �� such that ê�yi, bi � � e�: Thus,

being D small, �e�y, b�Re� � D will only be satis®ed in the neighborhood of the
points �yi, bi� and as consequence E�e� � D, y, b� will only be di�erent from 0
around those points. Given the symmetry of the present problem, we will
concentrate our attention around the point �p2 , p

4 ).
It is not di�cult to see that, if �e�y, b�Re� �D, the transformation strain eT�y, b�

that minimizes the energy W in the evaluation of E�e��D, y, b� (see Eq. (A6)) is a
convex combination of fReT�i �RTg with 0RiR6 and i 6� 5: This last statement is
equivalent to say that eT�y, b� is of the form

eT�y, b� � �e�y, b�
24ÿ2 0 0
0 1 0
0 0 1

35�X
i6�5

xiReT�i�RT �A17�

for some xi satisfying
P

xi � 0: Thus minimizing the elastic energy W (see Eq.
(A5)) over the transformation strains of the form (A17) and using the
approximation (A16) for �e�y, b� we obtain

E
ÿ
e� � D, y, b

�

1

8>><>>:
0 if �e�y, b�re� � D

3m

"
2ÿ 3�2dÿ 3a�2

2
ÿ
27a2 � 4d2

�#�e� � Dÿ �e�y, b��2 otherwise

�A18�

We ®nally compute T�e� � D� by taking ensemble average of E given by Eq. (A18)
and the multiplying the result by 12 (since, as mentioned above, we have focused
our attention to only one of the 12 disjoint regions where E 6� 0� to get

T�e� � D� �
�
E
ÿ
e� � D, y, b

�
f�y, b� dy db1T0D

3 �A19�

where

T0 � m�2d� 9a�2���
6
p

da3=2�2d� 3a�1=2
"
1ÿ 3�2dÿ 3a�2

4
ÿ
27a2 � 4d2

�# � 9:2� 104 GPa: �A20�
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