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Abstract. We find a quartic example of a smooth embedded negatively curved
surface in R3 homeomorphic to a doubly punctured torus. This constitutes an
explicit solution to Hadamard’s problem on constructing complete surfaces with
negative curvature and Euler characteristic in R3. Further we show that our solu-
tion has the optimal degree of algebraic complexity via a topological classification
for smooth cubic surfaces with a negatively curved component in R3: any such
component must either be topologically a plane or an annulus. In particular we
prove that there exists no cubic solutions to Hadamard’s problem.

1. introduction

The classical examples of complete negatively curved surfaces in R3 are the hyper-
bolic paraboloid and the hyperboloid of one sheet, which have Euler characteristics 1
and 0 respectively. In 1898 Hadamard [17] studied the problem of constructing com-
plete negatively curved surfaces with negative Euler characteristic, and described
some qualitative semialgebraic solutions by merging hyperboloids of one sheet; see
the Appendix. In this paper we obtain an explicit algebraic solution to Hadamard’s
problem. Specifically we show that the quartic equation

(1) 3z4 + 2(1 + 4xy)z2 − 2(x2 + y2)2 + 8xy − 1 = 0,

determines a smooth negatively curved surface Σ ⊂ R3 homeomorphic to the doubly
punctured torus, which has Euler characteristic −2, see Figure 1. Hadamard’s
problem has been studied by a number of authors [2, 4, 28, 29], and in recent
years there has been renewed interest in this problem due to applications in general
relativity [7, 8]; however, explicit solutions have been very rare. Indeed, other
than the example found here, we know of only one explicit solution to Hadamard’s
problem due to Vaigant [4, p. 55], which is an analytic quadruply punctured sphere.

We prove that Σ is negatively curved (Sections 2) by a direct computation. Fur-
thermore, we show that this quartic surface may be regarded as an optimal solution
to Hadamard’s problem by proving that there exists no smooth cubic surfaces in
R3 with negative curvature and Euler characteristic (Section 3). The proof of this
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Figure 1

result uses the known classifications of cubics and their lines, specially the relatively
recent work of Knörrer and Miller [20].

The algebraic properties of the nonsingular cubic surfaces and some of the singular
cases have been thoroughly expounded in Segre’s classic text [32]. Cayley [5] and
Salmon [30] showed that there are always 27 lines on a nonsingular cubic in CP3.
Much of the geometry surrounding the arrangements of these lines had been worked
out by numerous authors in the mid 1800’s. Among the many other mathematicians
who took part in this effort are Clebsch [10, 11], Cremona [14], Gordan [9], Klein
[19], and Steiner [33]. Around this time, Schläfli [31] and Cayley [6] classified the
singular surfaces into various types, but not in terms of the modern language of
singularity theory in the sense of Arnold [1]. This was carried out by Bruce and
Wall [3] for the CP3 case and by Knörrer and Miller [20] in the RP3 case.

Note 1.1. There are many questions in mathematical literature which are referred
to as “Hadamard’s problem”. We emphasize that by Hadamard’s problem through-
out this paper we mean constructing examples of complete negatively curved surfaces
with negative Euler characteristics embedded in R3. In particular, this is not to
be confused with “Hadamard’s conjecture” on the existence of bounded negatively
curved surfaces, see Note 1.4 below.

Note 1.2. We obtained (1) by experimenting with Cassini ovals, which are the
locus of points in the plane whose product of distances from a pair of fixed points
are constant. Specifically, note that if we set

x :=
√

2 x√
1 + z2

, y :=
√

2 y√
1 + z2

, z :=
√

2 z√
1 + z2

,

then (1) may be rewritten as

(2)
(
(x− 1)2 + (y − 1)2

) (
(x + 1)2 + (y + 1)2

)
= 1 + 2z2.

So each horizontal cross section of Σ is a rescaling of a Cassini oval about the points
±(1, 1), see Figure 2. In particular note that these curves never become convex as
z grows large. This is not accidental. Indeed convex cross sections of an algebraic
surface would have to be strictly convex, and if a compact negatively curved surface
is bounded by a pair of strictly convex curves in parallel planes, then the Gauss
map of the surface is one-to-one on each boundary component; therefore, since the
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Figure 2

Gauss map is locally one-to-one everywhere (due to the nonvanishing of curvature)
it would follow that the gauss map is a homeomorphism onto its image [15], which
would force the surface to be homeomorphic to an annulus.

Note 1.3. There have been a host of complete minimal surfaces with negative Euler
characteristic (and finite topology) discovered in recent years. Since these surfaces
are minimal, they necessarily have nonpositive Gaussian curvature; however, none of
these surfaces are known to have everywhere negative curvature. Indeed Meeks and
Perez have conjectured [25] that a complete embedded minimal surface in R3 with
negative curvature is either a catenoid, a helicoid, or a scherk 1- or 2-periodic surface;
in particular, there exists no minimal examples of complete embedded negatively
curved surfaces with negative Euler characteristic in R3.

Note 1.4. It is easy to construct examples of complete embedded negatively curved
surfaces in R3 with nonnegative Euler characteristic, which are contained in between
a pair of parallel planes. Consider for instance the semialgebraic surfaces

y = xz +
zn

1− z2
, −1 < z < 1; and x2 + y2 =

1
1− z2

, −1 < z < 1.

Figures 3(a) and (b) depict the first example for n = 1 and 0 respectively, and
Figure 3(c) depicts the second example. On the other hand, we do not know of any

Figure 3

examples of complete negatively curved surfaces with negative Euler characteristic
in a slab. In particular, it is not possible to merge two copies of the surface in 3(c)
in the same manner that Hadamard merged two hyperboloids (see the Appendix),
because in this case the curve of intersection between the two surfaces changes
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concavity. We should also mention that a conjecture attributed to Hadamard states
that there exists no complete embedded surfaces of negative curvature in a ball in
R3 [4, 29]. In the immersed case, this conjecture was settled by Nadirashvili [26]
who constructed complete minimal negatively curved surfaces in a ball, see also
[18, 13, 23, 22]; however, such surfaces cannot be embedded, since by a recent result
of Colding and Minicozzi [12], an embedded minimal surface must be unbounded.

Note 1.5. How could one construct other explicit solutions to Hadamard’s prob-
lem, i.e., with topologies different from that of Σ? One way might be to experiment
with generalized Cassini ovals, i.e., the locus of points whose product of distances
from three or more points are constant (see Note 1.1). One may also wonder if it is
possible to obtain new topological solutions by applying projective transformations
to Σ. To achieve this one would “blow up” a plane which interesects Σ in a singular
curve. For instance the transformation (x, y, z) 7→ (x/z, y/z, 1/z) blows up the xy-
plane. Figure 4 shows three projective transformations of Σ obtained in this way,
see [16] for explicit formulas for these surfaces. Any projective transformation of Σ

Figure 4

will necessarily have nonpositive curvature everywhere; however, all the surfaces in
Figure 4 also have exactly 4 flat points along the plane which was blown up. Fur-
thermore, these points are not colinear. Consequently no projective transformation
of Σ which changes its topology may have everywhere negative curvature, because
any such surface could also be obtained by a projective transformation of, say, the
surface (a), but there is only one plane which contains all flat points of surface (a)
and blowing that one up returns Σ.

We should also mention that recently some examples of smooth immersed sur-
faces of nonpositive curvature with only cross-cap cusps have been constructed
([27]) by smoothing singular “hedgehog” (hérisson) surfaces based on the exam-
ple of Martinez-Maure [24]. However, so far no nonsingular examples have been
produced with strictly negative curvature.

2. Proof that the Curvature of Σ is Everywhere Negative

There are two main cases to consider:
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2.1. z 6= 0. By symmetry we may assume that z > 0. Solving (1) for z and taking
its positive real root, we find that Σ ∩ {z > 0} is the graph of f(x, y)/

√
3 where

f(x, y) :=
√
−1− 4xy +

√
2 (2 + 3x4 − 8xy + 14x2y2 + 3y4).

The sign of the curvature of f is determined by the sign of

det Hess f(x, y) =
−2

(
p(x, y) + q(x, y)

√
4 + 6x4 − 16xy + 28x2y2 + 6y4

)
(
3x4 + 14x2y2 + 3y4 − 8xy + 2

)2(√4 + 6x4 − 16x− 1− 4xy
)2 ,

where

p(x, y) =
(
670x4y4 − 1424x3y3 + 900x2y2 − 176xy + 16

)
+

(
60x2y2 − 168xy + 114

) (
x4 + y4

)
+ 45

(
x8 + y8

)
,

and
q(x, y) = 2(2xy − 1)

(
15(x2 − y2)2 + 20x2y2 + 28xy − 4

)
.

One may use a computer to quickly check that the numerator of det Hess f is nega-
tive, which is all we need, see Note 2.1 below. We include, however, a verifiable and
transparent proof of this by considering the following three subcases. In each case
the problem is reduced to checking the sign of some polynomials of degree at most
4. The computer notebook [16] contains all these computations.

2.1.1. xy ≥ 1/2. It is enough to check that q > 0 and p > 0. This is immediate
for q. For p, note that if xy ≥ 1/2, then (x8 + y8) ≥ 1

2(x4 + y4) − 2x4y4. So
45(x8 + y8) ≥ 10(x8 + y8) + 70x4y4 ≥ 5(x4 + y4) + 50x4y4, which in turn yields the
following lower bound for p(x, y):

(720x4y4−1424x3y3+900x2y2−176xy+16)+
(
60x2y2 − 168xy + 119

) (
x4 + y4

)
.

Neither of these polynomials in xy have real roots. So it follows that p > 0.

2.1.2. 0 ≤ xy ≤ 1/2. If det Hess f vanishes, then so does

g(x, y) := p2(x, y)− q2(x, y)
(
4 + 6x4 − 16xy + 28x2y2 + 6y4

)
.

Further note that detHess f(0, 0) < 0. So we just need to show that g(x, y) 6= 0
when 0 ≤ xy ≤ 1/2 and x and y are not both zero. To this end we compute that

g(x, y) = 27(x2 + y2)2
(
g1(xy) + g2(xy)(x4 + y4) + g3(xy)(x8 + y8) + 75(x12 + y12)

)
,

where g1(x), g2(x), and g3(x) are given respectively by

(40000x4 − 33409x3 + 13304x2 − 2496x + 192) +
(
3900x3 − 24160x2 + 1976x + 1

)
x3,

1125x4 − 4160x3 + 4272x2 − 2112x + 508, and −750x2 + 240x + 180. It suffices to
check that these polynomials are all positive on [0, 1/2], which is indeed the case.
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2.1.3. xy < 0. Again we show that g(x, y) does not vanish. Note that

g(x, cx) = 27
(
c2 + 1

)2
x4

∑6
i=0 a2i(c)x2i

where a0(c) = 192, a2(c) = −2496c, a4(c) = 4(127c4 + 3326c2 + 127), and

a6(c) = −192c
(
11c4 + 174c2 + 11

)
,

a8(c) = 12
(
15c8 + 356c6 + 3498c4 + 356c2 + 15

)
,

a10(c) = 80c
(
c4 − 22c2 + 1

) (
3c4 + 14c2 + 3

)
,

a12(c) = 75
(
c6 − 5c4 − 5c2 + 1

)2
.

By symmetry it is enough to show that
∑6

i=0 a2i(c)x2i > 0 when x > 0 and −1 ≤
c < 0. When c < 0 all a2i, except a10, are clearly positive. Further it is easy to
verify that a10 + a12 > 0 and a8 + a10 > 0 on [−1, 0], since these are quartics in
terms of c2. Thus when x ≥ 1, a10x

10 + a12x
12 ≥ (a10 + a12)x10 > 0, and when

0 ≤ x ≤ 1, a8x
8 + a10x

10 ≥ (a8 + a10)x10 > 0 for all −1 ≤ c < 0. So, for x ≥ 0 and
−1 ≤ c < 0, we have

∑6
i=0 a2i(c)x2i ≥ a8(c)x8 + a10(c)x10 + a12(c)x12 > 0.

2.2. z = 0. After the substitution (x, y) 7−→ (x− y, x + y)/
√

2, (1) becomes

(3) z4 + 2(1 + 2x2 − 2y2)z2 = 2(x2 + y2)2 − 4x2 − 4y2 + 1

and Σ becomes symmetric with respect to all coordinate planes. There are two
subcases to consider:

2.2.1. y 6= 0. By symmetry, we may assume that y > 0. Solving (3) for y and taking
its positive real root we set

f(x, z) :=
√
−1− x2 − z2 +

√
(5z4 + 8x2z2 + 6z2 + 8x2 + 1)/2.

Then the portion of Σ which intersects the xy-plane in the interior of the first
quadrant is the graph of y = f(x, 0). A basic computation shows that

det Hess f(x, 0) =
−96x4 − 208x2 − 42 + 4

(
12x2 + 7

)√
16x2 + 2

(8x2 + 1)2
(
−2x2 +

√
16x2 + 2− 2

)2 .

The above expression vanishes only when the following expression is zero:(
−96x4 − 208x2 − 42

)2 − 16
(
12x2 + 7

)2 (
16x2 + 2

)
.

But this is a quartic in terms of x2 with no real roots.

2.2.2. y = 0. It remains to check the curvature of Σ where it intersects the x-axis,
which is at 4 points. By symmetry we may assume that x > 0, so there remain only
two points. To find these we solve (3) for x and taking its positive real roots, we set

f±(y, z) :=
√

1− y2 + z2 ±
√

(5z4 − 8y2z2 + 6z2 − 8y2 + 1)/2.

The points where Σ intersects the positive portion of the x-axis are (f±(0, 0), 0, 0),
and straight forward computations show that detHess f±(0, 0) = −7 < 0.
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Note 2.1. Some procedures in Mathematica, including “Reduce”, appear to quickly
verify that the numerator of detHess f in Section 2.1 is negative, see [16]. According
to [34, p. 1070], “Reduce” uses cylindrical algebraic decomposition for real domains
via Gröbner basis, the Collins-Hong algorithm, and Strzebonski’s genealogy-based
method using validated numerics backed up by exact algebraic number computation.

3. Topological Classification of Smooth Cubic Surfaces with a
Negatively Curved Component in R3

The simplest example of a negatively curved cubic in R3 is perhaps z = xy + y3,
which is topologically a plane. Next consider z(x2 + y2 − z2 − 1) = 1, which is
obtained by perturbing the union of a hyperboloid of one sheet and the xy-plane.
This surface is smooth and it has two components: a topological plane containing
some positive curvature, and a topological cylinder which is everywhere negatively
curved. The main result of this section is that these are topologically the only
possibilities for a negatively curved component of an affine cubic:

Theorem 3.1. If a connected component of a smooth cubic surface in R3 is nega-
tively curved, then it is homeomorphic to a plane or a cylinder.

We will break the proof of Theorem 3.1 into two cases depending on whether or
not the smooth cubic in R3 has at most isolated singularities “at infinity.” A precise
description for this term is as follows. If we denote the (homogeneous) coordinates
in RP3 by the equivalence classes [x : y : z : w], R3 may be naturally identified
with the plane w = 1. Then for any set A ⊂ R3, we denote its closure in RP3 with
respect to the manifold topology by A ⊂ RP3. Conversely, whenever we denote a
closed set in RP3 by A, then A := A∩R3 will denote its restriction in R3. Similarly
∂A denotes the topological boundary of the set A (not A) in RP3 and ∂A denotes
its boundary in R3. We define the plane at infinity, which we denote as RP2

∞, as the
set {w = 0}. (We think of RP2

∞ as a “sphere at infinity” with its antipodal points
identified, and we may visualize RP3 as R3 plus this sphere with its identification.)
Points of A at infinity refers to the set A ∩RP2

∞.

Note 3.2. To see why the proof of Theorem 3.1 is nontrivial, we first note that ev-
ery real affine cubic has a noncompact component, and thus a component without a
topological obstruction to having negative curvature everywhere. Further, there are
many cubic surfaces, such as the famous Clebsch diagonal, which are nonsingular
in R3 and have negative Euler characteristic. More precisely, the space T of all
real cubic surfaces in R3 or RP3 is 19 dimensional. Within this space there are 5
connected components of surfaces which are nonsingular in RP3. The remaining
singular surfaces can be decomposed into strata by a variety of criteria. We may re-
gard T as the space of equivalence classes under scalar multiplication of all homoge-
neous degree three real polynomials in four variables. The 15-dimensional projective
group, PGL(4,R), acts on T by the change of variables (x, y, z, w) 7→ A.(x, y, z, w)
for any matrix representative A of the class [A] ∈ PGL(4,R). If we represent T
as all scalar equivalence classes of real cubic polynomials in three variables, then
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[A] ∈ PGL(4,R) acts on T by the change of variables

(x, y, z) 7→
(

A1.(x, y, z, 1)
A4.(x, y, z, 1)

,
A1.(x, y, z, 1)
A4.(x, y, z, 1)

,
A1.(x, y, z, 1)
A4.(x, y, z, 1)

)
followed with multiplication by (A4.(x, y, z, 1))3. (Here Ai means the i-th row of A.)
This group preserves the sign of curvature and smoothness in the affine portion of
the surface, except possibly along the portion of the image of RP2

∞ in R3. This
image corresponds to the hyperplane defined by A−1

4 .(x, y, z, 1) = 0 where A−1

is the matrix inverse of A. In particular, negative curvature and smoothness are
preserved by the subgroup of PGL(4,R) where the first three coordinates of A4

vanish, which is just the affine group GL(3,R) n R3. Note that due to symmetries,
not all PGL(4,R) orbits are 15−dimensional.

In principal, we could start with a section of T over the 4-dimensional moduli
space M = T / PGL(4,R), such as the one given by Sylvester’s canonical pentahe-
dral representation, and then vary the RP2

∞ to obtain the 7-dimensional orbit space
of the affine group. However, a computational proof of Theorem 3.1 on this entire
orbit space seems impractical due to the presence of many orbits of surfaces which
are negatively curved. Indeed, even if we are handed a rational parametrization of
optimal degree for a subfamily of such surfaces, determining the existence of real
roots of the numerator of the curvature function in terms of the original coefficients
of the cubic is a difficult endeavor since it will typically be of at least degree 8 in
both parameters. Nevertheless, we will need to use a fairly direct method to rule
out a few special subsets of orbits where the computations turn out to be relatively
simple. For the vast majority of cases we will be able to employ the rich structural
features found in cubic surfaces.

3.1. Surfaces with at most isolated singularities on RP2
∞. The proof in this

case proceeds by first deriving a pair of geometric lemmas which give obstructions
to the existence of negative curvature everywhere on a surface. Following that, we
exploit the arrangement of lines on singular cubic surfaces described by the relatively
recent classification in [20] to satisfy the hypotheses of the lemmas. This allows us
to rule out each candidate for the Hadamard’s problem.

Recall that a curve in a surface in R3 is an asymptotic curve if its normal curvature
is identically 0 (i.e., the second fundamental form for the surface vanishes along the
tangent direction of the curve).

Lemma 3.3. Let Σ ⊂ R3 be a C2-immersed orientable surface with everywhere
negative Gaussian curvature. Suppose there exists a piecewise differentiable simple
closed curve C ⊂ Σ with n segments each of which is an asymptotic curve. Then n
is even.

Proof. Since Σ has negative curvature, at each point p ∈ Σ there exists a pair of
distinct asymptotic lines `1(p), `2(p) ∈ TpΣ, which, since Σ is orientable, are globally
well-defined, i.e., each is a continuous line field on Σ. For instance, we may let `1 be
the asymptotic line such that when it is rotated “clockwise” about p it first enters
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the sectors of TpM , determined by `1 and `2, where the directional curvatures of Σ
are positive, and let `2 be the other asymptotic direction.

Now fix an orientation for C, let Ci, i = 1, . . . , n denote the segments of C
enumerated consecutively, and set Cn+1 := C1. Since Ci are asymptotic curves,
either `1 or `2 (but not both) must be tangent to each Ci. Further, since Ci and
Ci+1 meet each other transversely, if `1 is tangent to Ci then `2 must be tangent to
Ci+1 and vice versa. Thus, since `1 and `2 are continuous and C is closed, n must
be even. �

Note 3.4. The doubly ruled quadric surface of negative curvature z − xy = 0 has
closed piecewise linear asymptotic curves of every positive even number of pieces.

Since smooth cubic surfaces in R3 have no boundary, they are always orientable.
Moreover, straight lines in any surface are always asymptotic curves which implies
the following restriction.

Corollary 3.5. If Σ contains a triangle or a pentagon, then it is not everywhere
negatively curved. �

Note 3.6. If a smooth oriented surface Σ embedded in R3 contains a compact region
B ⊂ Σ bounded by a union of simple closed piecewise linear curves C1, . . . , Ck, then
each Ci is also intrinsically piecewise geodesic. In that case, the Gauss-Bonnet
theorem states that

2πχ(B) = Θ +
∫

B
Kdσ

where Θ =
∑k

i=1

∑ni
j=1 θij is the sum of the signed exterior angles between all the

intersecting pairs of line segments and dσ is the area form. In particular, if k = 1
and C1 is planar then Θ = 2π and so χ(B) is at most 0 when Σ is negatively curved.
The next result will show that such a bounded region cannot arise, even in some
noncompact cases.

Definition 3.7. A plane P ⊂ RP3 is a bounding plane for a connected component
Σ of a surface in R3 if

(i) there is a component B of Σ− P such that ∂B ⊂ P and
(ii) either B misses a plane Q ⊂ RP3 distinct from P , or P 6= RP2

∞ and
supx∈B dR3(x, P ) is achieved at some point of B.

We will slightly abuse terminology and call any such component B a bounded com-
ponent of Σ− P , and is by definition a connected component of S − P .

An Eckardt point of a surface is where three asymptotic curves meet tangent to
3 distinct directions. (N.B. for real algebraic surfaces, an Eckardt point is usually
defined to be a real point in the intersection of three lines, two of which may be
(nonreal) conjugate complex lines. In our definition, the lines must be real.)

Lemma 3.8. If any connected component Σ of a smooth affine algebraic surface
contains an Eckardt point or admits a bounding plane, then it is not everywhere
negatively curved. In the latter case, Σ contains an open set of nonnegative curva-
ture.
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Proof. At an Eckardt point the second fundamental form is identically 0 as there
can be at most two co-isotropic directions for a nonzero two dimensional quadratic
form. Since the ambient curvature of R3 vanishes, the Gauss equations imply that
the Gauss curvature of Σ at p vanishes.

For the second statement, let P ⊂ RP3 be the bounding plane of Σ, and let B
and Q be the surface and plane provided by the definition of bounding plane. First,
we treat the case where P = RP2

∞.
By assumption, B lies to one side of Q in R3. Let c : [0,∞) → R3 be a unit

speed ray normal to Q with c(0) ∈ Q, and lying on the same side of Q as B. Let Qt

be the unique plane parallel to Q passing through c(t). Then there is a least upper
bound t0 for the set of all t > 0 such that Qt is disjoint from B. By compactness,
the plane Qt0 intersects B. However, Qt0 ∩RP2

∞ = Q ∩RP2
∞ which was assumed

to be disjoint from B ∩RP2
∞. Therefore Qt0 intersects B and is tangent to B at

each point of intersection, since B lies entirely in a closed half space determined by
Qt0 . In particular, at each intersection point x, the second fundamental form of B
is positive semi-definite. Hence B is not positively curved at x.

Now suppose P 6= RP2
∞. If supz∈B d(z, P ) = d(x, P ) for x ∈ B, then the plane

P ′ parallel to P at distance d(x, P ) on the same side of P as x intersects B at
x. Moreover B − P ′ lies entirely to one side of P ′ and x does not lie in ∂B ⊂ P
since by assumption B cannot be planar. Therefore P ′ is tangent at x and B has
nonnegative curvature at x.

Suppose instead that there is a plane Q distinct from P . Let T ∈ PGL(4,R)
be any projective transformation that carries P to RP2

∞. Since B misses P and
Q 6= P , T (B) will still lie in R3 and T (Q) will be a plane which is not RP2

∞. By
the first case, there is a point T (x) ∈ T (B) with nonnegative curvature. Since T
preserves the sign of the curvature, x ∈ B is not positively curved.

For the final statement, we note that if B has positive curvature at x, then it
has positive curvature in a neighborhood of x. If B has zero curvature at x then
since B − P ′ lies to one side of P ′, either there is a neighborhood of x containing
an open set with positive curvature, or else the curvature identically vanishes on B.
However, there cannot be an open set where the curvature vanishes since B cannot
be planar. �

Note 3.9. Each of the conditions in the definition of a bounding plane is necessary
for Lemma 3.8 to hold. In item (i), ∂B must belong to a single plane P . For
instance, a component Σ of the affine quartic (1− z2)(x2 + y2)− 1 = 0 is a smooth
negatively curved cylinder of revolution bounded between two parallel affine planes
z = 1 and z = −1. If we take B to be the component of Σ − ({x = 0} ∪ {y = 0})
intersecting the positive orthant, then B misses the plane {x + y = 0} in RP3.

In item (ii) we must insist that Q and not just Q be disjoint from P . For if B is
the negatively curved cylindrical component of z(x2 + y2 − 1− z2)− 1 = 0, then B
misses the affine plane Q = {z = 0}. (However, B intersects every plane of RP3.)

Also, there are bounding planes which satisfy each case in item (ii) to the exclusion
of the other. First, if Σ =

{
z = x2 + y2

}
and P = {x = 0}, then B = {x < 0} ∩ Σ

has ∂B ⊂ P . We can set Q = {z = −1}, while supx∈B d(x, P ) = ∞. On the other
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hand, for B = Σ =
{
z(x2 + y2) = 1

}
and P = {z = 0}, the maximum distance on

B to P is achieved at the point (0, 0, 1) ∈ B but every plane in RP3 intersects
B ∩RP2

∞ since this is the line {w = 0 = z} ⊂ RP2
∞.

Lastly, note that if B misses a line ` of RP2
∞ and B approaches B ∩ RP2

∞
from one side only, then there is a plane Q missing B with Q ∩ RP2

∞ = `. The
second condition is necessary to exclude cases like the negatively curved hyperboloid
z2 = x2 + y2 − 1 which intersects every plane, but whose boundary in RP2

∞ misses
the line {z = 0 = w}.

The above lemma immediately implies the following.

Corollary 3.10. Let Σ be a real affine component of a cubic surface S ⊂ RP3

which possesses a bounding plane P , and a bounded component B ⊂ Σ. If Σ′ is a
negatively curved component of S for a different choice of RP2

∞, then an open set
of B lies in a different component from Σ′. �

Now we may prove the main result of this subsection:

Proposition 3.11. Let Σ be a negatively curved connected component of a cubic
surface in R3. Suppose that Σ has only isolated singularities at infinity. Then Σ is
homeomorphic to a plane or a cylinder.

Proof. All of the results we will need about the nonsingular real projective cubic
surfaces, including the basic facts about singular ones, can be found in Segre’s
monogram [32]. We will use these facts to derive corresponding facts about the real
affine surfaces. First, we let S represent the cubic surface in RP3 and let Sing
be the set of singular points of S. The number of components of S − Sing is at
most two. One component always has closure with odd Euler characteristic, and is
therefore nonorientable. If there are two components, then the closure of the other
component is a weakly convex sphere in any affine subspace of RP3 containing it.

If Σ is contained in a convex spherical component of S − Sing, then Σ can
(topologically) consist of either a sphere or a disk corresponding to whether RP2

∞∩
Σ is the empty set, or either a point or a topological circle. Since the spherical
component is weakly convex and Sing ⊂ RP2

∞ by smoothness, these are the only
possibilities. Therefore we may and will assume that Σ lies in the component with
odd Euler characteristic.

Segre also observed that the complement of all the lines in S is a collection
of topological disks together with the possible spherical component. Hence the
lines, together with their vertices of intersection, form the one skeleton of a cell
decomposition for the nonorientable component of S. In particular the configuration
of lines can be used to compute the Euler characteristic. For each p ∈ Sing, let µ(p)
denote the number of components of U−{p} for any sufficiently small neighborhood
U of p in S. Define Y to be the unique minimal compactification of S − Sing
resulting in a closed topological surface built by replacing each point p ∈ Sing in
S with µ(p) distinct points. The computation of χ(Y ) has been carried out in the
list of Figure 5. From that list we may also derive χ(S) in each case, by noting that
χ(S) = χ(Y )−

∑
p∈Sing(µ(p)− 1).
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The next step is to relate χ(Σ) to χ(S). Since S has only isolated singularities,
it does not have a planar component and so the plane RP2

∞ intersects S in a
cubic curve C. For the moment, assume S − Sing, or equivalently Y , has only one
component. Let n be the number of connected components of RP2

∞ − C. By the
classification of cubic curves, this consists of between one and four disks, or else up
to one disk and an annulus. Let s ∈ {0, 1} be the number of annular components.

Note that all lines in S are connected to each other through lines which meet
RP2

∞ from two sides. Hence there is at most one component of S containing lines.
This is also the only component of S that can have negative Euler characteristic,
and therefore when it exists, it must be our candidate for a counterexample Σ.
Since singular points always belong to lines, we are obliged to make RP2

∞ contain
all singular points so that they do not reside in Σ.

Let N be the number of connected components of S. Under the requirement
that RP2

∞ pass through all singularities of Σ, the number N − n is invariant under
equisingular isotopy. By checking each of the 45 cases, we see that N − n ≤ 1 and
N−n ≤ 0 whenever Y does not contain a spherical component. Alternatively, Segre
shows that every singular surface is a boundary point in the moduli space of one of
the 5 components of smooth surfaces. Therefore we can verify the above inequalities
for one surface in each of these 5 classes and derive the general statement from the
lower semicontinuity of N − n over degenerating isotopies.

The Euler characteristic satisfies χ(S) = χ(S) + χ(C). Since the components of
RP2

∞ − C are disks (χ = 1) and possibly an annulus (χ = 0), it follows that 1 =
χ(RP2

∞) = n−s+χ(C). Since the Euler characteristic of a nonspherical component
of S is at most one we have, χ(S) ≤ χ(Σ)+N −1 ≤ χ(Σ)+n−1 = χ(Σ)−χ(C)+s
or simply χ(Σ) ≥ χ(S)− s ≥ χ(S)− 1.

Now suppose Y does have a spherical component. Let Σ1, . . . ,Σi be the com-
ponents of S corresponding to the spherical component of Y . Since N − n ≤ 1,
we have χ(S) ≤ χ(Σ) +

∑i
j=1 χ(Σj) + N − i − 1 ≤ χ(Σ) +

∑i
j=1 χ(Σj) + n − i =

χ(Σ) +
∑i

j=1 χ(Σj) + 1 − i − χ(C) + s or χ(Σ) ≥ χ(S) −
∑i

j=1 χ(Σj) + i − 1 − s.
Note from the table that whenever Y has two components, then χ(Y ) = 3. Let
Sing0 ⊂ Sing be the subset of points belonging to the closure of both components
of S − Sing. If Sing0 is empty then χ(S) = 3, i = 1 and χ(Σ1) = 2 so that
χ(Σ) ≥ 3− 2− s ≥ 0. If Sing0 contains only one point p with µ(p) = 2, then i = 1,
χ(S) = 3− 1 = 2 and χ(Σ1) = 2− 1 = 1 so χ(Σ) ≥ 1− s ≥ 0. If Sing0 contains two
points each with µ(p) = 2, then i = 1 and these points and the line segment between
them belong to both C and Σ1 since singular points are always connected by lines
and the spherical component is weakly convex. Therefore χ(Σ1) = 1, χ(S) = 1
and χ(Σ) ≥ −s. Since we assumed that there are no singular line segments, the
line segment between the two singular points does not belong to Σ since it belongs
to Σ1. However, this segment does belong to C and the remaining portions of the
line are a degeneration of a separating curve in RP2

∞. Adding the segment turns
the complementary annulus component into a disk in RP2

∞ − C so that s = 0 and
hence χ(Σ) ≥ 0. Combining the results so far, we may exclude from consideration
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cases 4, 5, 9, 10, 13, 16, 17, 25, 30, 32, 34, 36, 41, 43, 44 and 45 since χ(Σ) ≥ 0 for each
of these.

We refer the reader to the pictures in Figure 6 for a partial view of the ar-
rangements of the lines in each equisingular isotopy class. In order to see the
lines and intersections which are hidden from view, the reader may find it help-
ful to view the animated “3D” version of each surface available on the web-site
www.Cubics.AlgebraicSurface.net ([21]). In each picture, RP2

∞ has been chosen
so as to not contain any line nor singularity of the surface. However, the pictures do
not always show all intersections between lines. To help identify triangles, we recall
that any two lines intersecting at a point p belong to a triangle unless either one of
the lines passes through a singularity or else p is an Eckardt point.

A consequence of the work of Schläfli is that within each equisingular isotopy
class, the number of lines as well as which pairs of lines intersect is kept invariant.
Since a plane intersects the surface in a cubic curve, no more than three lines can
be coplanar. Also, all lines are tangent to the surface at a nonsingular intersection
point, so any nonsingular multiple intersection point is an Eckardt point consisting
of the intersection of exactly 3 coplanar lines. Through an isotopy, a line belonging
to a triangle or an Eckardt point may undergo an elementary move whereby it
either crosses, moves off of, or moves onto the intersection point of the other two
lines all within the same plane. Therefore, if we let G(S) be the graph in RP3

whose vertices are the intersections of lines on S and whose edges are the line
segments between intersection points, then for an equisingular isotopic surface S

′ the
graph G(S′) can be obtained from G(S) by a finite sequence of elementary moves.
The elementary moves are also constrained by the fact that a line must be freely
isotopic to its image within the surface, so that, for instance, it cannot jump across
a hole. In general, equisingular isotopy classes with few lines do not usually have
representatives admitting Eckardt points and thus have rigid cell decompositions.

The three lines forming any triangle in the surface form a total of 4 triangles in
RP3 with the same vertices, which we call associate triangles. Therefore, the only
way a triangle and its associates can be removed from any affine presentation of the
surface is to place at least one vertex of the triangle into RP2

∞. We also consider
an Eckardt point and its three associated coplanar bigons with single vertex at the
Eckardt point to be (degenerate) triangles as well. With this convention, the total
number of triangles, and the triples of lines that form them, are held constant in
each isotopy class. In the literature, a plane containing the three lines of a triangle
or Eckardt point, is called a tritangent plane of the first or second kind. Noting that
Eckardt points are degenerations of 2-cells, then the number of 2-cells plus Eckardt
points is also invariant under isotopy. However, the number of edges as well as the
incidence graph of polygonal 2-cells may vary through the isotopy.

The main point of the pictures is that, by revealing the cell structure of a single
representative from each isotopy class, they determine the incidence relations be-
tween the pairs of lines and the position of the lines relative to the topology of the
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Figure 5. Classification of surfaces with isolated singularities with
their line count and topological type from [20].
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Figure 6. Arrangements of the lines on each of the 45 surfaces
with at most isolated singularities. The multiplicity of lines passing
through a singularity is indicated by the color. These are arranged
in accord with the table, numbered across then down. (Courtesy of
www.Cubics.AlgebraicSurface.net [21].)
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surface for all surfaces in each class. Nevertheless, we cannot appeal to the curva-
ture of the representative nor to the placement of the RP2

∞ as seen in the picture
in order to rule out the whole equisingular isotopy class.

For what follows, if a triangle in Σ, possibly with one or more vertices in RP2
∞,

lies in a bounding plane for Σ and bounds a subsurface B ⊂ Σ, then we will call
it a bounding triangle of Σ. A triangle or one or more of its associates may be a
bounding triangle for Σ. For instance, if a triangle T ⊂ Σ separates S − T into two
connected components such that RP2

∞ misses at least one of these components, then
T is a bounding triangle for Σ. By Corollary 3.10, Σ has an open set of nonnegative
curvature if it contains a bounding triangle.

Suppose that, for some choice of RP2
∞, say RP2

∞ = Q, a plane P containing a
triangle T in S is a bounding plane for a smooth component Σ′ of S − Q which
contains T . In that case, let B1, . . . , Bk be the components of Σ′ − P which are
bounded by P and note that each of them are the components bounded by P . We
will say that a plane P containing a triangle T in Σ is obstructed if at least one vertex
of T belongs to RP2

∞, and in the event that P is a bounding plane for the component
Σ′ the component containing T of some other affine realization Σ−RP2

∞ for some
choice of RP2

∞ whenever T separates S into two components, a nonorientable one
B1 and an orientable one B2, then RP2

∞ either passes through a singular point in
B2 or else separates B2 into at least two components one of which lies in a different
component of S from Σ. Note that if a plane P intersects Σ in a triangle, then P ∩Σ
contains precisely the three lines of the triangle since these form a maximal cubic
curve. If T is obstructed and lies in the plane P 6= RP2

∞, then by Corollary 3.10,
RP2

∞ must intersect each component of Σ − P in either a singular point or else a
one dimensional curve.

Suppose B1, . . . , Bk is a family of disjoint open smooth surfaces in S such that
each Bi is bounded by a triangle Ti ⊂ Σ with at least one vertex in Σ. Since any
triangle T misses a plane in RP3 distinct from the plane of T , it follows that for
each i, Bi −RP2

∞ must consist of two nonempty components in R3. Since the Bi

are disjoint, this implies that for the cubic curve C = RP2
∞ ∩ Σ, there are at least

k components of RP2
∞ −C. If Σ−∪Bi has nonempty interior, then RP2

∞ −C has
at least k +1 components. Since the maximum number of components of RP2

∞−C
for a cubic curve C is 2 if C contains no lines, 3 if it contains at least one line,
and 4 if and only if it contains three lines in general position, this constraint makes
obstructing triangles rather difficult.

If a triangle T ⊂ Σ is not obstructed then Σ has nonnegative curvature by Corol-
lary 3.5 and Lemma 3.8. The configuration of lines will allow us to rule out almost
every case by finding simultaneously unobstructable triangles. In what follows we
will always set C = RP2

∞ ∩ S, and we will assume familiarity with the various
possibilities for cubic curves in RP2.

1. This class is represented by the Clebsch diagonal cubic. Each such surface
is smooth with the maximum number of real lines, 27. It has 45 distinct
planes containing triangles. A necessary condition for RP2

∞ to obstruct all
these triangles is that it contain one vertex from each one. Choose a linear
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projection of RP3 to a plane such that RP2
∞ is sent to a line, `, and each

line of the surface is sent to a line. Recall that no vertex of a triangle may
be shared by another. So if ` is not the image of a line of the surface it must
intersect the lines with total algebraic intersection number 45 ∗ 2 = 90, and
more if there are Eckardt points. Since a line of a surface may belong to
at most 5 triangle planes, if ` is the image of one or three lines of Σ, the
only possibilities, then there are still at least 90− 3 ∗ 5− 1 = 74 intersection
points counted with multiplicity. However, each of the images of the 27 lines
can intersect ` at most once. Hence it is impossible to obstruct all triangles
simultaneously.

2. This case has 15 lines and the same argument as in the first case applies.
There are now 15 planes containing triangles. Projecting RP2

∞ to `, there
are at least either 30 (respectively, 25, or 14) intersection points counted
with multiplicity if ` is the image of no (resp. 1 or 3) lines of Σ. However,
there can be at most 15 (resp. 14 or 12) lines intersecting `.

3. Observe that there can be no Eckardt points in this case, so that the cell
decomposition shown is rigid under isotopy. There is one line ` of Σ that
intersects all 6 of the remaining lines. If RP2

∞ does not contain this line, then
there is a unique plane that contains one vertex from each triangle. From the
configuration we see that such a choice of RP2

∞ must intersect ` between the
innermost lines since no pair of these lines may cross in the isotopy. However,
such a plane cannot obstruct the bounding triangle shown at the very bottom
since it misses an interior component of one of its associated triangles. On
the other hand, there is no choice of RP2

∞ containing ` which obstructs both
the topmost bounding triangle and the very bottom bounding triangle. To
see this, recall that RP2

∞ must intersect the surface in a cubic curve, so as it
contains ` it can contain at most one other smooth parametrized subcurve,
unless it contains two other lines. In particular, it misses one of the regions
bounded by the two bounding triangles.

6. This has 21 lines. It also has 15 lines and 15 triangle planes which do not
pass through the singular point. Therefore, the same argument as in case
#2 shows that no plane can contain a vertex of each triangle.

7. Here RP2
∞ must create separate components from the disks bounded by the

top central and middle central triangles each of which cannot degenerate
since they possess a singular vertex. Additionally, RP2

∞ must separate a
component from the bottom central triangle, unless it degenerates to an
Eckardt point in which case RP2

∞ must pass through this point. In all
cases, C is an impossible cubic curve.

8. None of the triangles can degenerate to Eckardt points since they would con-
tain the singularity. Therefore there are always four disjoint disks bounded
by bounding triangles. This makes C an impossible curve.

11. Any admissible choice of RP2
∞ must contain both singular vertices, and

it must also pass through the interior of the triangle shown at top center
containing a singular vertex in order to obstruct it. Therefore, to obstruct
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the large lower nonsingular triangle, RP2
∞ must pass through its vertex

shown toward the back. (It must also pass through the intersection point
shown front and center which is a vertex of a triangle sharing a line with the
large lower central triangle.) In this case, RP2

∞ intersects S in a cubic curve
C of characteristic χ(C) = −2. As shown, S − C is connected. Since such
a curve is maximal, RP2

∞ cannot have any additional points of intersection
with S, and so S−C is connected in the entire isotopy class. Hence χ(Σ) =
χ(S) − χ(C) = 1. (Alternatively RP2

∞ cannot separate any of the disks
bounded by triangles.)

12. RP2
∞ must contain the line through the two singular points. However, there

are also 3 disks bounded by triangles with a vertex at a singular point. (One
having two singular vertices.) This makes C impossible.

14. We note that in order to obstruct the front and top most bounding triangle
possessing a singular vertex p, it is necessary to choose RP2

∞ to cut the disk
bounded by this triangle as well as contain p. Off of p, this disk intersection
with RP2

∞ belongs to a smooth subcurve of C. There is a second triangle
shown on the lower left with a vertex at the singular point and which shares
one line, `, with the first triangle situated on top. This second triangle
bounds a disk which therefore must also be intersected by RP2

∞ since RP2
∞

intersects ` only at the singular point, this intersection produces another
smooth component in C − {p}. However, there is a third bounding triangle
with a vertex at the singular point on the right side of the picture as shown,
symmetric to the second triangle with respect to the only reflection sym-
metry. If RP2

∞ cuts the interior of the bounded disk of this triangle, then
C − {p} contains yet another component. This cannot happen since C can-
not reduce to three lines and still obstruct all the bounding triangles. These
triangles persist in all representatives of the isotopy class since they contain
p and so a degeneration of a triangle to an Eckardt point at p would cause
another line to intersect p. (N.B. there are triangles on the hidden back-
side of the picture as shown which could conceivably degenerate to Eckardt
points, so the entire cell complex is not necessarily invariant.)

15. There are three planes of triangles all sharing a common line, `0, each con-
taining one of the three mutually skew lines, `1, `2 and `3, which are disjoint
from the singular point. We will label these planes top, middle and bottom
by their relative position along a vertical line through the midpoint of the
picture. In the top triangle plane, two of the four associate triangles bound
disks, D1 shown at center top and D2 shown front center and continuing on
the back. Two of the triangles on the bottom plane span disks D3, shown
at top left and continuing on the bottom right, and D4, shown at front
right and continuing mostly hidden toward the left rear. The middle plane
contains no bounding triangles. Therefore, RP2

∞ must pass through the
singularity as well as at least one point of the interior of each of the four
bounded disks. However, if it passes through D1 and D4 then since it crosses
`0 at the singular point and `3 on the D4 side and not the D3 side of `0,
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RP2
∞ is forced to intersect D2 and D4 in non intersecting components. The

cubic curve C = RP2
∞ ∩Σ must therefore have three components when the

singular point is removed. This cannot happen unless C consists of three
lines through the singular point. In that case it could not intersect any of the
disks. Lastly note that the entire cell complex is combinatorially invariant
under isotopy since none of the triangles can degenerate to an Eckardt point
at the singularity because the lines `1, `2, and `3 must remain nonsingular.

18. In this case there are three singular points so RP2
∞ is determined and C

consists of three lines. However, then the disk shown center top and bounded
by a triangle cannot intersect RP2

∞.
19. Here RP2

∞ is again determined by the three singularities, but the topmost
disk is disconnected. So instead we note that the disk shown top left and
continuing on bottom right is bounded by a triangle and connected to Σ,
but it cannot be intersected by RP2

∞.
20. Use the same argument as in the previous two cases but note that the disk

shown at center bottom is not intersected.
21. Both singular points must be in RP2

∞ and it must cut the disk bounded by
the triangle shown at top center in order to obstruct it. However, as in the
previous two cases, the disk bounded by the triangle shown at lower front,
and continuing at back right, with two singular vertices and sharing a line
with the first triangle cannot be intersected by RP2

∞.
22. RP2

∞ must contain the line through the two singular points. However, it
cannot then intersect both the disk shown at top center and the disk shown
at lower right and continuing on the top left. Otherwise, C would have two
disjoint ovals.

23. There are two triangle planes which do not pass through the singular point.
We label the one shown at bottom as the first triangle and the one shown at
left as the second. Note that they share a line, `, in common. Suppose the
first such triangle shown at bottom does not degenerate to an Eckardt point
in a given representative of the isotopy class. Since RP2

∞ must contain
an interior point of the disk it bounds, as well as the singularity, it must
pass through the vertex of the second triangle which does not lie on `. On
the other hand, if the first triangle degenerates to an Eckardt point, then
either RP2

∞ passes through the Eckardt point and the vertex of the second
triangle not on `, or else RP2 intersects Σ in exactly ` and the line of
multiplicity 2 which passes through the singular point and intersects `. In
all cases the cubic curve C = RP2

∞ ∩ Σ has characteristic χ(C) = −1.
The complement S − C is connected since it is connected for the given
representative, and no new components can be created by maximality of C.
Hence χ(Σ) = χ(S)− χ(C) = 0.

24. There are two bounding planes which bound disks: one plane contains the
three lines through the singular point, and the other contains the two parallel
lines, as shown, only one of which passes through the singular point. Since
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RP2
∞ − C must have at least three components, χ(C) ≤ −2 so χ(Σ) =

χ(Σ)− χ(C) ≥ 2.
26. The RP2

∞ must contain the singular point and one of the vertices of the
lower triangle. However, there are two bounded disks of the plane of the
lower triangle. Therefore RP2

∞ − C has at least three components and C
has an additional isolated point. This is impossible for a cubic curve.

27. This is the unique class of surfaces with four singularities. The lines show
that these are never coplanar, so there can be no smooth representatives.

28. This admits the same argument as case #19.
29. RP2

∞ must contain the line ` passing through both singularities. There are
three planes containing triangles each sharing ` as a common line. However
RP2

∞ then cannot obstruct both the triangle with top-most remaining vertex
and the one shown at bottom. Note that for each of these two triangles, two
of the four associates bound disjoint disks, and the other two associates
bound a common cylinder. Moreover, the entire cell complex is invariant
under isotopy, since the singularities must be kept disjoint.

33. First note that there are three distinct planes containing triangles, all of
which contain the singular point as a vertex. The singular point must be
contained in RP2

∞, which satisfies the vertex requirement for obstructing all
three triangle planes. Only one of the three triangle planes, the one shown
as approximately horizontal, contains a bounding triangle (shown with a
vertex at infinity). In the plane of the bounding triangle, two of the four
associate triangles bound a disk. Therefore RP2

∞ − C has at least three
components. Hence χ(C) ≤ −2, but for certain cases where χ(C) = −2
it is possible for the curve to separate a disk component from each of the
bounded disks. For instance, in the given picture, we may take RP2

∞ to
contain the horizontal line which passes through the singularity and which
in the front passes very slightly above the line through the singularity shown
extending from the front to the rear. In this case, all of our obstructions
are satisfied since χ(Σ) = χ(S) − χ(C) + 2 = −1, and we do not obtain
the desired conclusion. By an argument similar to Lemma 3.8, it is possible
to show that the closure of the disk separated by the triangle plane which
is shown roughly in the plane of the paper has nonnegative curvature at a
nonsingular point, even though this is not a bounding plane. However, this
isotopy class has a relatively simple and small parameter space of normal
forms which will allow us to rule it out easily by the direct argument given
in Lemma 3.12 below.

35. The RP2
∞ passes through the singularity and one of the vertices of the

lower triangle. Since this triangle bounds a disk, there must be at least two
components to RP2

∞−C. On the other hand, either C has a cusp or a line.
In the first case no such curve exists. In the second case, since the curve
contains an upper line and one of the lower vertices, it must also intersects
in either another line or else a curve connecting the singular point to the
lower vertex. In either case, χ(C) = −1 with S − C connected, or else it
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doesn’t exist. (In fact no such curve can separate the disk bounded by the
lower triangle to obstruct it.)

37. The argument of case #18 applies here.
38. Here χ(Σ) = χ(Y )−3 = 0 and RP2

∞ is determined uniquely by the condition
that it contain all three singular points. Therefore χ(S) = χ(S)−χ(C) = 3,
and S has two disk components, so χ(Σ) = 1.

39. The two line containing the two singular points lies in RP2
∞. No matter

how C intersects S it must contain another portion of the curve incident
on the A4 singular point. Any cubic curves with a line incident to another
smooth curve cannot have an isolated point or ellipse so there are no annulus
components of RP2

∞ − C. Hence χ(Σ) ≥ χ(S) = 0.
40. The tangent cone at the A5 singular point consists of two planes intersecting

in a line of the surface, one of which is a bounding plane containing the three
lines of the surface. This plane bounds a disk shown at the left and contin-
uing top right. Consequently RP2

∞ must intersect this disk in a separating
curve which also passes through the singular point. Therefore RP2

∞−C has
no annulus components which implies χ(Σ) ≥ χ(S) = 0.

42. This case is similar to #40. The plane containing the two parallel lines
bounds a disk which must be separated by RP2

∞. Therefore the curve C
meets the D5 singularity with valence 4, unless the entire disk is separated,
in which case C consists of both parallel lines. In either case there can be
no annulus component as C is connected. Hence χ(Σ) ≥ 0.

The next lemma will complete the proof of the proposition. �

Lemma 3.12. Every component Σ with negative Euler characteristic of a smooth
affine cubic surface having an A4 singularity in RP3, as in case #33, has positive
curvature somewhere.

Proof. We will use the classification in Section 2 of [3]. The A4 singularity is a binode
and falls under their Lemma 3 part (c) with {k0, k1} = {1, 2}. This means that
after a linear change of coordinates we may write the original cubic in homogeneous
coordinates in the form f(x, y, z, w) = xzw+f3(x, y, w) where the cubic plane curve
f3 = 0 has a multiplicity 1 intersection with w = 0 at the point [x : y : w] = [0 : 1 : 0]
and a multiplicity 2 intersection with the plane x = 0 at [0 : 1 : 0]. Noting the
discussion at the end of Case B of Section 2 in [3], if we place the singularity at the
point P = [0 : 0 : 1 : 0], then after a linear change of coordinates we may write the
cubic in homogeneous coordinates in the form

f(x, y, z, w) = xzw + yw2 + x(a1x
2 + a2xy + a3y

2),

where a3 6= 0. Since projective transformations preserve the sign of curvature of the
affine portion, we just need to check the curvature for all choices of RP2

∞ containing
the singularity. Keeping P fixed and varying RP2

∞ corresponds to replacing w by
a4x + a5y + a6w, where a6 6= 0. In affine coordinates, Σ is therefore a component of
the surface S defined by g = 0 where

g(x, y, z) = zx(a4x + a5y + a6) + y(a4x + a5y + a6)2 + x(a1x
2 + a2xy + a3y

2).
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Suppose a5 6= 0. It is easy to check that the parametrized line `(t) = (0,−a6
a5

, t)
belongs to S, and therefore it belongs to the candidate component Σ, since all lines
are connected in S. We can compute,

grad(g)(`(t)) =
(

a3a
2
6

a2
5

, 0, 0
)

.

We conclude that the Gauss map along this line is constant so the Gauss curvature
vanishes along `.

Now suppose a5 = 0, then RP2
∞ contains `. Solving for z in g = 0, we obtain

z(x, y) =
−y(a4x + a6)2 − x(a1x

2 + a2xy + a3y
2)

x(a4x + a6)
.

The components of S, if more than one, must be separated by the parallel planes
x = 0 and a4x + a6 = 0.

The curvature of S is the Hessian of z(x, y) divided by the square of the first
fundamental form. Hence, if the Hessian is nonnegative at a point where x(a4x +
a5y + a6) 6= 0, then the curvature is nonnegative there. The Hessian of z(x, y) is
easily computed to be,

H = a6
2

(
−a2

2 − 4 a1 a3

(a6 + a4 x)4
+

2 x (a2 x + 2 a3 y)
x4 (a6 + a4 x)2

− 1
x4

)
.

Since a3 6= 0 and y occurs only in one term, for any x 6∈ {0,−a6
a4
}, we can choose

y either sufficiently negative or sufficiently positive so that the expression for H is
positive. Hence each component of S has positive curvature.

Therefore, in all cases, the curvature of any component with negative Euler char-
acteristic is nonnegative somewhere. �

Note 3.13. The underlying reason the curvature vanishes along `(t) in the proof
above, is that this line passes through the singular point with multiplicity three. It
can be shown that any line that is a degeneration of three or more lines must have
vanishing curvature along its entire length. We could have used this additional tool
with the lemmas above to provide an alternate approach in ruling out each of the
cases including #33.

3.2. Other cases of singularities and the proof of Theorem 3.1. It remains
to treat the cubics which are smooth in R3 but possess more than just isolated
singularities at infinity. These remaining possibilities of singularities were classified
in [20], and may be conveniently placed into the following three categories:

(1) Reducible surfaces, which consist of three planes or a plane and a possibly
singular quadric.

(2) Irreducible ruled surfaces, which are not cones over an irreducible cubic
curve in the plane. These are projectively equivalent (and equisingularly
isotopic) to one of the following three surfaces represented in homogeneous
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coordinates with a solitary singular line at 0 = w = x:

w2y + x2z = 0

(w2 − x2)y − 2wxz = 0

x3 + w2y + wxy = 0

(3) An irreducible ruled surface which is a cone over an irreducible plane cubic.
These are projectively equivalent to a surface described in homogeneous
coordinates (in RP3) by

x2y − 4w3 + awy2 − by3 = 0

where the discriminant a3 − 27b2 vanishes, i.e. a = 3 |b|2/3, and the signs of
a and b place the singularities into one of three types:
(a) a 6= 0 and b > 0 (a line of self intersection along [0 : 2 : z : 1] if b = 1)
(b) a 6= 0 and b < 0 (an isolated line along [0 : −2 : z : 1] if b = −1)
(c) a = b = 0 (cusp line at [0 : 1 : z : 0])

Note we have set the cone point at [x : y : z : w] = [0 : 0 : 1 : 0].
In the reducible case we either obtain three planes, or else a plane and a quadric.
The planar cases all have 0 curvature, and they must be parallel, with possibly two
or three planes identified, in order to be affinely smooth. For the case of a plane and
quadric, the only way the plane has no singularities in R3 is to either add it as the
plane at infinity, w = 0, or else disjoint from the quadric. The latter case can occur
when the quadric is an ellipsoid, paraboloid or a two-sheeted hyperboloid. In any
case, the question reduces to which quadrics may have negative curvature, and these
are always either planar (e.g. z − xy = 0) or cylindrical (e.g. x2 + y2 − 1− z2 = 0)
since a compact ellipsoid must always have positive curvature by Gauss-Bonnet, and
no higher genus quadrics exist.

Lastly, in each of the ruled surface cases, if we place the singular line in the plane
w = 0, then each component in R3 is a plane. It is routine to verify this for each of
the 6 explicit cubics above, where we set b = 1,−1, 0 in the irreducible conic case.
This completes the proof of Theorem 3.1. �

Appendix: Sharp Estimate for Merging Two Hyperboloids

Consider the hyperboloids of one sheet given by F1 = 0, F2 = 0 where

F1(x, y, z) := (x− 2)2 + (y − 2)2 + z2 − 1,

F2(x, y, z) := (x + 2)2 + (y + 2)2 + z2 − 1.

In [17, p. 42] Hadamard claims that

F1F2 = ε, F1 > 0, F2 > 0,(4)

is a negatively curved surface, provided that ε is a rapidly decreasing function of the
coordinates. Here we obtain a sharp estimate which shows that ε can be set equal
to a constant. To this end we solve (4) for z and take its positive real root to define

f(x, y) :=
√

x2 + y2 −
√

16(x + y)2 + ε + 7.
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The graph of f is the portion of the solution to (4) in the half space z > 0. As we
have done earlier in this paper, we need to check the sign of

det Hess f(x, y) =
g
(
(x + y)2

)
(16(x + y)2 + ε)3/2 (

x2 + y2 −
√

16(x + y)2 + ε + 7
)2 ,

where
g(x) = −ε2 − 24xε− 112ε +

√
16x + ε (23ε− 16x).

We need to have g(x) < 0 when x ≥ 0. This is always the case when x ≥ 23ε/16.
Further if x < 23ε/16, then

g(x) < −ε2 − 24xε− 112ε +
√

24ε(23ε− 16x) < −ε2 − 112ε + 46
√

6ε3/2.

The last expression vanishes only when ε = 0 or ε = 6236±92
√

4593 and is negative
between its two smallest roots. So it follows that g(x) < 0 when

(5) 0 < ε ≤ 6236− 92
√

4593 ≈ 1.00585.

This yields that, for these values of ε, the solution to (4) is negatively curved where
z > 0. By symmetry, the same estimate works in for z < 0 as well. So it remains
to consider where z = 0. In this case we first substitute (x, y) 7→ (x− y, x + y)/

√
2

so that our hyperboloids become symmetric with respect to the coordinate planes.
Then we solve (4) for y and take one of its positive real roots to obtain

f(x, z) :=
√
−x2 + z2 +

√
32x2 + ε− 7.

A computation shows that

det Hess f(x, 0) =
−ε2 − 48εx2 − 112ε +

√
32x2 + ε

(
23ε− 32x2

)√
(32x2 + ε)3

(
x2 −

√
32x2 + ε + 7

)2 .

Since the denominator of the last expression is always positive, we just need to
check the sign of the numerator. To this end note that if 23ε− 32x2 ≤ 0, then the
numerator is always negative. So suppose 23ε − 32x2 > 0. Then x2 < 23ε/32, and
consequently the numerator is smaller than

−ε2 − 48εx2 − 112ε +
√

24ε
(
23ε− 32x2

)
≤ −ε2 − 112ε + 46

√
6ε3/2,

which, as we had computed before, is negative when (5) holds. Now it only remains
to check the intersections with the x axis. To this end we solve (4) for x, after the
substitution (x, y) 7→ (x− y, x + y)/

√
2, and take its positive real roots to define

f±(y, z) :=
√
−y2 + z2 ±

√
32(1− y2 + z2) + ε + 9.

We then compute that

det Hess f±(0, 0) =
∓

(√
ε + 32± 16

)2

(ε + 32)
(√

ε + 32− 9
) .
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These expressions are negative as long as ε < 49, which completes the proof that
when (5) is satisfied, (4) has everywhere negative curvature. In particular, we con-
clude that the semialgebraic surface

F1F2 = 1, F1 > 0, F2 > 0,

is negatively curved. This surface is depicted in Figure 7.

Figure 7

More generally it can be shown that for hyperboloids

F1(x, y, z) := (x− a)2 + (y − a)2 + z2 − r2,

F2(x, y, z) := (x + a)2 + (y + a)2 + z2 − r2,

the solution to (1) is negatively curved if and only if

0 < ε ≤ a2

r2

(
108a4 − 44r2a2 + 7r4 − |r2 − 6a2|

√
3 (108a4 − 52r2a2 + 11r4)

)
.

The argument is virtually identical to that given above for the case a = 2 and r = 1.
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