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Abstract

We study the one-dimensional Helmholtz equation with a spatially random source function.
Our main goal is to reconstruct the statistical distribution of the source function from bound-
ary measurements of the radiation field. First, we present the model problem and convert it
into a two-point spatially stochastic boundary value problem, for which we prove there exists
a unique pathwise solution. Furthermore, we deduce an explicit formula for the solution by
using the integrated solution method. Based on the analysis and solution formula, we propose
a novel and efficient strategy, which only uses fast fourier transforms (FFT), to reconstruct
the statistical properties, such as the mean and the standard deviation or the variance, of the
random source function from measurements at one boundary point. Numerical examples are
presented to demonstrate the validity and effectiveness of the proposed method.
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1 Introduction

The inverse source problem for wave propagation has been considered as a basic tool for the solu-
tion of reflection tomography, diffusion-based optical tomography, and more recently fluorescence
microscopy [25]. This problem is largely motivated by medical applications in which it is desirable
to use electric or magnetic measurements on the surface of the human body, such as head, to infer
the source currents inside of the body, such as the brain, that produced these measured data. A
major advantage of such imaging modalities over the traditional ones is that it allows systematic
imaging studies of protein localization in living cells and of the structure and function of living
tissues.

The problem has been extensively investigated in the literature both from the point of view of
applied biomedical engineering and also as a mathematical problem. There are a number of work
on the scalar and the full vector electromagnetic inverse source problem in the free space as well as
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in nonhomogeneous background media, see e.g. Albanese and Monk [1], Ammari et al. [2], Devaney
et al. [12], Eller and Valdivia [14], and references cited therein. Most of the work make use of the
fact that the radiation pattern determines the field everywhere outside the source volume. In other
words, the inverse source problem is to determine a source function that generates a prescribed
radiation pattern.

It is also known that there exist an infinity of sources that radiate fields which vanish identically
outside their support volumes so that the inverse source problem does not have a unique solution,
i.e., an infinity of solutions can be obtained by adding any one of these nonradiating sources to any
given solution, see e.g. Bleistein and Cohen [6], Devaney and Sherman [13], and Hauer et al. [16].
Therefore, it is clear that the inverse source problem is ill-posed. In order to obtain a unique
solution, it is necessary to give additional constraints that the source must satisfy. A typical choice
of the constraint is to pick up the minimum energy solution, which represents the pseudo-inverse of
the inverse source problem, see e.g. Marengo and Devaney [19]. Recently Bao et al. [5] investigates
the multi-frequency inverse source problem in which the uniqueness is shown and some stability
estimates are established from the radiated fields outside the source volume for a set of frequencies.
We refer to Chen and Rokhlin [9] for an inverse medium scattering problem for the one-dimensional
Helmholtz equation. See also Gelfand and Levitan [15] for the related Sturm-Liouville problem.

In many applications the source and hence the radiated field may not be deterministic but
rather are modeled by random processes, such as Gaussian random field. Therefore their governing
equations are some forms of stochastic differential equations instead of their deterministic counter-
parts. In fact, stochastic partial differential equations are known to be effective tools in modeling
complex physical and engineering phenomena including the wave propagation, see e.g. Papani-
colaou [22]. In this paper, we are concerned with the wave propagation in the one-dimensional
stochastic Helmholtz equation with source generated by a spatial Wiener process.

Unlike deterministic differential equations, solutions of stochastic differential equations are ran-
dom functions. Hence it is more important to study their statistical characteristics such as mean
value, variance, and even higher order moments in many practical problems. In the context of
the inverse random sources problem, the goal is thus to deduce the statistical structure such as
the mean value and standard deviation or variance of the source from physically realizable mea-
surements of the radiated fields, such as the measurements taken on the boundaries. We refer to
Devaney [11] for an inverse random source problem where it was shown that the auto-correlation
function of the random source is uniquely determined everywhere outside the source region by
the auto-correlation function of the radiated field. Recently, a novel and efficient Wiener chaos
expansion based technique has been developed for modeling and simulation of spatially incoherent
sources in photonic crystals by Badieirostami et al. [3]. See Bao et al. [4] for a related inverse
medium scattering problem with a stochastic source which is to reconstruct the refractive index of
an inhomogeneous medium from the boundary measurements of the scattered random field. We
refer to Cao et al. [7] for the finite element and discontinuous Galerkin method for solving the
stochastic Helmholtz equation, and Kloeden and Platen [18] for an account of various numerical
methods and approximation schemes for general stochastic partial differential equations.

This work is devoted to the one-dimensional stochastic Helmholtz equation in a homogeneous
background medium. The random source function, representing the electric current density, is
assumed to have a compact support contained in a finite interval. The problem is also modeled
with an outgoing wave condition imposed on the lateral end points of the finite interval, which
reduces the model to a second order stochastic two-point boundary value problem. We first convert
this model problem into an equivalent first order stochastic two-point boundary value problem and
show the pathwise existence and uniqueness of the solution. Then we explicitly deduce the solution
by using the integrated solution method, which transforms the first order stochastic two-point
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boundary value problem into another equivalent problem: stochastic initial value problems plus an
algebraic linear system. The solution is given by a combination of a regular integral and an Itô
integral. And it also connects the random wave field with the Fourier transform of the mean and
variance of the random source function in an explicit manner. By studying the expectation and
variance of the integral equation, we are able to develop an efficient algorithm to reconstruct the
mean and variance, which is based on the fast Fourier transform (FFT). Our numerical examples,
including the reconstructions of both smooth and non-smooth functions, demonstrate the validity
and effectiveness of the proposed method.

The paper is organized as follows. In Section 2, we present the model problem and formulate it
as a first order two-point stochastic boundary value problem. The existence and uniqueness of the
direct problem are established, and the solution formula is explicitly derived from the integrated
solution method. Base on the solution, we propose an inversion method for the reconstruction of
the mean and variance of the random source. In Section 3, we discuss numerical implementation
of the method and present three numerical examples to demonstrate the validity and effectiveness
of the proposed approach. The paper is concluded with general remarks and directions for future
research in Section 4.

2 Inverse Random Source Problem

In this section, we introduce a mathematical model for the inverse random source problem in wave
propagation. To study this model, we first convert it into a stochastic boundary value problem.
We establish a theoretical framework for the model by an integrated solution method, which allows
us to derive an explicit formula for the solution of the inverse random source problem, and design
the computational methods.

2.1 The Model Problem

Consider the one-dimensional Helmholtz equation in homogeneous background medium

u′′(x, ω) + ω2u(x, ω) = f(x), (2.1)

where the magnetic permeability and the electric permittivity of the vacuum are assumed to be
the unity for simplicity, ω > 0 is the angular frequency, and f , representing the electric current
density, is a stochastic source function assumed to have the form

f(x) = g(x) + h(x)W ′
x.

Here g and h are deterministic functions with compact supports contained in [0, 1], and Wx is a
one-dimensional spatial Wiener process, and W ′

x is its stochastic differential in the Itô sense which
is commonly used as a model for the white noise, i.e, a spatial Gaussian random field. Following
from the standard stochastic theory on the white noise, we have

E[f(x)] = g(x) and V[f(x)] = h2(x),

where E and V are the expectation and variance operators, respectively. Obviously, because of
the random source, the solution u, the radiate field, is also a random function. Typical bound-
ary conditions imposed on u are the so called outgoing radiation boundary conditions, which are
equivalent to the boundary conditions at two lateral end points of the interval [0, 1]:

u′(0, ω) + iωu(0, ω) = 0 and u′(1, ω)− iωu(1, ω) = 0. (2.2)
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Given the mean g and the standard deviation h of the random source function f , the direct
(forward) problem is to determine the random wave field u. On the contrary, the inverse source
problem is to determine the mean value g and the standard deviation h or the variance h2 of
the random source from the boundary measurements of the random wave field u(0, ω). Our main
goal is to investigate both direct and inverse problems and propose a novel and efficient numerical
algorithm to solve the inverse source problem. We remark that we use the left boundary point
x = 0 in our discussion, all of the results are still true if the measurements are taken at the right
boundary point x = 1.

First, we show that the direct problem has a unique pathwise solution for each realization of the
random field dWx, and the solution is given by an explicit formula, which serves as the foundation
of our numerical algorithm for the inverse problem. To begin with, we convert the second order
wave equation in the direct problem into a first order two-point stochastic boundary value problem.

Let u1 = u and u2 = u′, the second order stochastic boundary value problem (2.1)–(2.2) can be
equivalently written as

du = (Mu+ g)dx+ hdWx, (2.3)

A0u(0) = 0, (2.4)

B1u(1) = 0, (2.5)

where

u =

[
u1

u2

]
, g =

[
0
g

]
, h =

[
0
h

]
, M =

[
0 1

−ω2 0

]
,

and
A0 = [iω 1], B1 = [−iω 1].

We use this equivalent problem to establish our analysis in the rest of this section.

2.2 Two-point stochastic boundary value problem

To solve the two-point boundary value problem, we apply the integrated solution method to a
more general initial value problems together with an algebraic linear system. The reader is referred
to Nualart and Pardoux [20] for discussions on general boundary value problems for stochastic
differential equations, and to Zhang [26] for the details of the integrated solution method for solving
the deterministic two-point boundary value problems.

Consider the stochastic differential equation in the interval [0, 1]

du = Mu+ g + hdWx (2.6)

together with a partial boundary condition for u(0) = u0 at x = 0, which is assumed to be given
in the following form of the linear equations

A0u0 = v0, (2.7)

where u(x) ∈ Cn,g(x) ∈ Cn, and h(x) ∈ Cn are n-dimensional vector fields, v0 ∈ Cn1 (n1 < n)
is a given n1-dimensional vector field, M ∈ Cn×n is a constant matrix, A0 ∈ Cn1×n is a full rank
matrix, i.e., rank(A0) = n1 or equivalently det(A0A

H
0 ) ̸= 0.

The problem (2.6)–(2.7) has infinitely many solutions since only n1 linearly independently
boundary conditions are given for the n-dimensional vector field u(x). Denote the set of solu-
tions by

U = {u(x) : u(x) satisfies (2.6) and (2.7)}.
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For any given x ∈ [0, 1], denote Ux the set of points in the n-dimensional Euclidean space

Ux = {p = u(x) : u(x) ∈ U}.

Due to the linearity of the problem (2.6)–(2.7), the point set Ux spans an n2 = n− n1 dimensional
hyperplane, which can be represented by

Ux = {p : A(x)p = v0(x)},

where v0(x) ∈ Cn1 is an n1-dimensional vector and A(x) ∈ Cn1×n is a full rank n1 × n matrix.

Definition 2.1. The pair of functions {A(x),v0(x)} is called the integrated solution for the problem
(2.6)–(2.7) if they satisfy

A(x)u(x) = v0(x) for any x ∈ [0, 1]. (2.8)

The following representation theorem characterizes how the integrated solution can be expressed
in terms of M,A0,g,h, and v0 from the problem (2.6)–(2.7).

Theorem 2.1. The pair of functions {A(x),v0(x)} is the integrated solutions to the problem (2.6)–
(2.7) if and only if there exists n1 × n1 matrix D0(x) such that

dA(x) = (−A(x)M +D0(x)A(x))dx, A(0) = A0, (2.9)

dv0(x) =(A(x)g(x) +D0(x)v0(x))dx+ A(x)h(x)dWx, v0(0) = v0. (2.10)

Proof. Assume that {A(x),v0(x)} is the integrated solution to the problem (2.6)–(2.7), thus they
satisfy Eq. (2.8). Taking the differentiation of Eq. (2.8) and substituting (2.6), we have

[dA(x) + A(x)Mdx]u(x) = dv0(x)− A(x)g(x)dx− A(x)h(x)dWx (2.11)

for any u(x) ∈ U . Therefore for any fixed point x ∈ [0, 1], the hyperplane defined from (2.11)
contains the n2-dimensional hyperplane defined from (2.8). It follows from the linear algebra that
every row of the n1 × (n+ 1) matrix

[dA(x) + A(x)Mdx, dv0(x)− A(x)g(x)dx− A(x)h(x)dWx]

is a linear combination of the row vectors for the n1× (n+1) matrix [A(x),v0(x)], i.e., there exists
an n1 × n1 matrix D0(x) such that

[dA(x) + A(x)Mdx, dv0(x)− A(x)g(x)dx− A(x)h(x)dWx] = D0(x)[A(x),v0(x)],

which gives Eqs. (2.9) and (2.10).
On the other hand, we assume that {A(x),v0(x)} satisfies Eqs. (2.9) and (2.10). It follows from

Eq. (2.6) that for any u(x) ∈ U we have

d[A(x)u(x)− v0(x)] = D0(x)[A(x)u(x)− v0(x)]dx

and the homogeneous initial condition

A(0)u(0)− v0(0) = 0

Solving the above initial value problem leads to

A(x)u(x) = v0(x) for any u(x) ∈ U.
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Finally we prove that the rank of the matrix A(x) is n1.
Consider an initial value problem for the n1 × n1 matrix ER(x)

dER(x)−D0(x)ER(x)dx = 0,

ER(0) = In1×n1 ,

where In1×n1 is the n1×n1 identity matrix. Let the pair of functions {AR(x),vR(x)} be the solution
of the following initial value problem

AR(x)− AR(x)M = 0, AR(0) = A0,

dvR(x)−AR(x)g(x)dx− AR(x)h(x)dWx = 0, vR(0) = v0.

It can be verified that

A(x) = ER(x)AR(x) and v0(x) = ER(x)vR(x).

The rank of AR(x) is the same as that of A0, i.e., rank(AR(x)) = rank(A0) = n1, since AR(x) is the
solution of the initial value problem of the homogeneous ordinary differential equation. A simple
calculation yields

[detER(x)]
′ = t(x)detER(x),

where t(x) = traceD0(x). It follows from

detER(x) = detER(0) exp

∫ x

0

t(s)ds = exp

∫ x

0

t(s)ds ̸= 0

that ER(x) is nonsingular. Thus we have rankA(x) = rankAR(x) = n1, which completes the proof.

Based on the integrated solution method, we may consider the first order linear stochastic
differential equation

du = (Mu+ g)dx+ hdWx, (2.12)

together with the boundary condition which involves both u0 and u1 = u(1) in the form of linear
equations

A0u0 = v0, (2.13)

B1u1 = v1, (2.14)

where B1 ∈ Cn2×n and v1 ∈ Cn2 with n1 +n2 = n. We give a necessary and sufficient condition for
the pathwise existence and uniqueness of solution for any fixed realization of Wiener process Wx.

We note that a solution to Eq. (2.12), if any, takes the form

u(x) = eMx

[
u0 +

∫ x

0

e−Myg(y)dy +

∫ x

0

e−Myh(y)dWy

]
,

where the last expression is given in the sense of the Itô integral. The solution is required to satisfy
the boundary condition at x = 1

B1e
M

[
u0 +

∫ 1

0

e−Myg(y)dy +

∫ 1

0

e−Myh(y)dWy

]
= v1.
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We denote the random vector

B1e
M

∫ 1

0

e−Myh(y)dWy = w ∈ Cn.

The well-posedness of the two-point stochastic boundary value problem (2.12)–(2.14) can be equiv-
alently formulated as follows: Given v0 and v1, for any random process w, there exists a unique
solution u0 to the linear equations

A0u0 = v0,

B1e
Mu0 = v1 −w −B1e

M

∫ 1

0

e−Myg(y)dy.

It follows from the linear algebra that the unique solvability of the above linear system can be
obtained if the coefficient matrix is nonsingular. Therefore we obtain the necessary and sufficient
condition for the well-posedness of the two-point stochastic boundary value problem.

Theorem 2.2. The two-point stochastic boundary value problem (2.12)–(2.14) has a unique solu-
tion if and only if

det

[
A0

B1e
M

]
̸= 0. (2.15)

We next construct the solution u(t) as a function of the input Wx so that the fact that Wx is a
Wiener process is actually irrelevant in the derivation.

Let {A(x),v0(x)} and {B(x),v1(x)} be the integrated solutions to Eqs. (2.12)–(2.13) and
(2.12)–(2.14), respectively. It follows from the representation of the integrated solution in Theorem
2.1 that there exist n1 × n1 matrix D0(x) and n2 × n2 matrix D1(x) such that

dA(x) = [−A(x)M +D0(x)A(x)]dx, A(0) = A0, (2.16)

dv0(x) = [A(x)g(x) +D0(x)v0(x)]dx+A(x)h(x)dWx, v0(0) = v0. (2.17)

and

dB(x) = [−B(x)M +D1(x)B(x)]dx, B(1) = B1, (2.18)

dv1(x) = [B(x)g(x) +D1(x)v1(x)]dx+B(x)h(x)dWx, v1(1) = v1. (2.19)

Define the n× n matrix Y (x) as

Y (x) =

[
A(x)
B(x)

]
.

Lemma 2.1. Assume that the two-point stochastic boundary value problem (2.12)–(2.14) has a
unique solution, then the matrix Y (x) is nonsingular.

Proof. We have in Theorem 2.1 thatA(x) = ER(x)AR(x). It is easily verified that AR(x) = A0e
−Mx.

Thus we have A(x) = ER(x)A0e
−Mx. Similarly we may obtain

B(x) = EL(x)BL(x) = EL(x)B1e
Me−Mx,

where EL(x) is an n2 × n2 nonsingular matrix. We have

Y (x) =

[
ER

EL

] [
A0

B1e
M

]
e−Mx,

which completes the proof from a direct application of Theorem 2.2.
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Theorem 2.3. The two-point boundary value problem (2.12)–(2.14) is equivalent to the linear
system [

A(x)
B(x)

]
u(x) =

[
v0(x)
v1(x)

]
, (2.20)

where {A(x),v0(x)} and {B(x),v1(x)} are the integrated solutions to Eqs. (2.12), (2.13) and
(2.12), (2.14), respectively.

Proof. Taking the differentiation to Eq (2.20), and substituting (2.16)–(2.19), we obtain

0 = d

[
A(x)
B(x)

]
u(x) +

[
A(x)
B(x)

]
du(x)− d

[
v0(x)
v1(x)

]
=

[
A(x)
B(x)

]
[du(x)− (Mu(x) + g(x))dx− h(x)dWx] .

Since the matrix Y (x) is nonsingular due to Lemma 2.1, we get

du(x)− (Mu(x) + g(x))dx− h(x)dWx = 0.

The boundary conditions (2.13) and (2.14) follows from the initial conditions in (2.16) and (2.18),
which complete the proof.

Therefore the two-point stochastic boundary value problem (2.12)–(2.14) is reduce to the initial
stochastic ordinary differential equations (2.16)–(2.17) and (2.18)–(2.19), and a linear algebraic
equation (2.20).

2.3 Solutions for the inverse random source problem

Using the theory developed in the previous section, we easily obtain the existence and uniqueness
for the inverse random source problem, which is stated as following,

Corollary 2.1. The two-point boundary value problem (2.3)–(2.5) attains a unique solution.

Proof. Since M is a non-singular matrix, there exists a non-singular matrix Q such that

Q−1MQ = Λ,

where

Λ =

[
iω

−iω

]
, Q =

[
1 1
iω −iω

]
, and Q−1 =

1

2iω

[
iω 1
iω −1

]
.

A simple calculation yields

det

[
A0

B1e
M

]
=

∣∣∣∣ iω 1
−iωe−iω e−iω

∣∣∣∣ = 2iωe−iω ̸= 0.

It follows from Theorem 2.2 that the two-point boundary value problem (2.3)–(2.5) has a unique
solution.
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Furthermore, if we let {A(x), v0(x)} and {B(x), v1(x)} be the integrated solutions for Eqs. (2.3),
(2.4) and (2.3), (2.5), respectively, and take

D0(W,x) = iω and D1(V, x) = −iω,

we obtain the equations for the integrated solutions

dA = (−AM + iωA)dx, A(0) = A0, (2.21)

dv0 = (Ag + iωv0)dx+ AhdWx, v0(0) = 0, (2.22)

and

dB = (−BM − iωB)dx, B(1) = B1, (2.23)

dv1 = (Bg − iωv1)dx+BhdWx, v1(1) = 0. (2.24)

It is easy to solve the above ordinary differential equation and the integrated solutions can be
obtained

A(x) = [iω 1], B(x) = [−iω 1] (2.25)

and

v0(x) =

∫ x

0

eiω(x−y)g(y)dy +

∫ x

0

eiω(x−y)h(y)dWy (2.26)

v1(x) = −
∫ 1

x

eiω(y−x)g(y)dy −
∫ 1

x

eiω(x−y)h(y)dWy. (2.27)

Therefore, we obtain an explicit formula for the solution for the direct problem.

Corollary 2.2. The unique solution of the two-point stochastic boundary value problem (2.1)–(2.2)
is

u(x, ω) =
1

2iω

∫ 1

0

eiω|x−y|g(y)dy +
1

2iω

∫ 1

0

eiω|x−y|h(y)dWy. (2.28)

Proof. By Theorem 2.3, the two-point boundary value problem (2.3)–(2.5) is equivalent to the
linear system [

iω 1
−iω 1

] [
u1(x)
u2(x)

]
=

[
v0(x)
v1(x)

]
.

Using Cram’s rule yields

u(x) = u1(x) =
1

2iω
[v0(x)− v1(x)], (2.29)

which completes the proof after substituting Eqs. (2.26) and (2.27).

We are ready to derive the formulas to reconstruct the mean and variance of the random source
function. Let us evaluate both sides of Eq. (2.28) at x = 0, which yields

2iωu(0, ω) =

∫ 1

0

eiωyg(y)dy +

∫ 1

0

eiωyh(y)dWy. (2.30)

We easily obtain the relation between the data u(0, ω) and the mean value g after taking the
expectation on both sides of (2.30). However, it is not convenient to derive the connection between
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the boundary measurements u(0, ω) and the standard deviation h, so we split all the complex
functions into the sum of real part and imaginary part as following.

Denote
u(0, ω) = Reu(0, ω) + i Imu(0, ω).

Then Eq. (2.30) can be decomposed into two equations corresponding to the real part and the
imaginary part:

2ωReu(0, ω) =

∫ 1

0

sin(ωy)g(y)dy +

∫ 1

0

sin(ωy)h(y)dWy, (2.31)

2ωImu(0, ω) = −
∫ 1

0

cos(ωy)g(y)dy −
∫ 1

0

cos(ωy)h(y)dWy. (2.32)

Recalling the basic property for the Itô integrals

E
[∫ 1

0

sin(ωy)h(y)dWy

]
= E

[∫ 1

0

cos(ωy)h(y)dWy

]
= 0,

we take the expectation on both sides of Eqs. (2.31) and (2.32) and obtain

2ωE [Reu(0, ω)] =

∫ 1

0

sin(ωy)g(y)dy, (2.33)

2ωE [Imu(0, ω)] = −
∫ 1

0

cos(ωy)g(y)dy. (2.34)

Therefore the mean value g can be recovered from either the inverse sine transform from Eq. (2.33)
or the inverse cosine transform from Eq. (2.34).

Both Eqs. (2.33) and (2.34) are only valid for positive angular frequency ω > 0. The zero
Fourier mode is missing which leads to the non-uniqueness of the reconstruction, i.e., any vertical
shift of the reconstructed function will give the same nonzero Fourier modes corresponding to the
positive angular frequencies. In practice, the zero Fourier mode is set to be zero. After the inverse
sine or cosine transform, the reconstructed function can be artificially shifted in vertical direction
to make the value vanish at the lateral point x = 0 or x = 1 since the function g is assumed to
have a compact support contained in the interval [0, 1].

Using the Itô isometry, we have

E

[(∫ 1

0

sin(ωy)h(y)dWy

)2
]
=

∫ 1

0

sin2(ωy)h2(y)dy =
1

2

∫ 1

0

[1− cos(2ωy)]h2(y)dy,

E

[(∫ 1

0

cos(ωy)h(y)dWy

)2
]
=

∫ 1

0

cos2(ωy)h2(y)dy =
1

2

∫ 1

0

[1 + cos(2ωy)]h2(y)dy.

Taking the variance on both sides of Eqs. (2.31) and (2.32) and using the Itô isometry, we get

4ω2V [Reu(0, ω)] =
1

2

∫ 1

0

[1− cos(2ωy)]h2(y)dy,

4ω2V [Imu(0, ω)] =
1

2

∫ 1

0

[1 + cos(2ωy)]h2(y)dy.

Subtracting the above two equations we deduce

4ω2{V [Imu(0, ω)]− V [Reu(0, ω)]} =

∫ 1

0

cos(2ωy)h2(y)dy. (2.35)
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The variance h2 or the standard deviation h of the random source function can thus be retrieved
from taking the inverse cosine transform on both sides of Eq. (2.35). Furthermore the zero Fourier
mode can also be recovered by adding the above two equations

4ω2{V [Imu(0, ω)] + V [Reu(0, ω)]} =

∫ 1

0

h2(y)dy. (2.36)

Following Eqs. (2.31), (2.32), and (2.35), we may conclude that the inverse problem has a
unique solution, i.e., the mean value g and the standard deviation h can be uniquely determined,
if the data E [Reu(0, ω)], E [Imu(0, ω)], V [Reu(0, ω)], and V [Imu(0, ω)] m given for all frequencies
ω > 0. This is certainly an ideal situation since the data may only be available at a finite number
of discrete set of frequencies in practice. The uniqueness is still valid as long as the data covers all
the Fourier modes of the mean value g and the standard deviation h. Otherwise the uniqueness will
not hold if some Fourier coefficients of the functions g and h are missing. In the reconstruction, we
adopt so-called filtered backprojection algorithm which assumes that the Fourier coefficients at all
of the unobserved frequencies are zero. This algorithm produces the reconstruction with minimal
energy under the observation constraints. An alternative approach is the ℓ1-minimization based
method proposed by Candès et al. [8]. We refer to Yin et al. [24] for a discussion on the efficient
Bregman iterative algorithms for the ℓ1-minimization problems.

3 Numerical experiments

In this section, we discuss the algorithmic implementation and present three numerical examples
to demonstrate the validity and effectiveness of the proposed method.

The scattering data u(0, ω) is obtained from two different approaches to avoid the so-called
inverse crime. One is based on an integral equation and another is based on differential equation.
Both approaches are numerically implemented and give the same performance of the reconstruc-
tions. We briefly introduce how we obtain the scattering data in the following.

In the integral equation approach, we use the solution representation in Eq. (2.28). We evaluate
both sides at x = 0

u(0, ω) =
1

2iω

∫ 1

0

eiωyg(y)dy +
1

2iω

∫ 1

0

eiωyh(y)dWy.

Numerically the integrals are approximated by the trapezoidal rule

u(0, ω) ≈ 1

2iω

[
∆y

M−1∑
m=0

eiωymg(ym) +
N−1∑
n=0

eiωynh(yn)dWn

]
,

where ∆y = 1/M, ym = m∆y = m/M, yn = n/N , and the spatial Brownian motion dWn = ξn/
√
N ,

in which ξn ∈ N(0, 1) is a random variable in the standard Gaussian distribution with zero mean
and unit variance. We generate ξn by a random number generator in FORTRAN90. In the following
examples, M and N are taken as M = N = 256.

In another approach based on solving the stochastic initial value problem, we use equations
(2.29) and (2.26)–(2.27) to get

u(0, ω) =
1

2iω
[v0(0)− v1(0)] = −v1(0)

2iω
.
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To obtain the data u(0, ω), it suffices to solve the stochastic ordinary differential equation

dv1 = (g − iωv1)dx+ hdWx,

v1(1) = 0,

Then we apply a numerical method over [0, 1] to compute the solution. We first discretize the
interval. Let ∆x = 1/N for some positive integer N , and xi = i∆x = i/N . Denote the numerical
approximation to v1(xn) by vn1 . The Euler–Maruyama method takes the form

vn+1
1 = vn1 +

[
g(xn+1)− iωvn+1

1

]
∆x+ h(xn+1) [W (xn+1)−W (xn)]

for n = N−1, N−2, . . . , 0. We refer to [17] for an introduction to numerical simulation of stochastic
differential equations.

Example 1. Let

g(x) = 0.3

[
(1− cos(2x))− 16

21
(1− cos(3x)) +

5

28
(1− cos(4x))

]
,

h(x) = 0.6− 0.3 cos(x)− 0.3 cos(2x),

reconstruct the mean value and the standard deviation given by

g1(x) = g(2πx) and h1(x) = h(2πx)

inside the interval [0, 1]. This is a relatively simple example as both functions g1 and h1 contain
few low frequency Fourier modes. For the reconstruction of the mean value g1, the scattering
data u(0, ωk) is computed at discrete frequencies ωk = kπ, k = 1, 2, . . . , 8; while the scattering
data u(0, ωk) is computed at frequencies ωk = kπ/2, k = 1, 2, . . . , 8, for the reconstruction of the
standard deviation h1. The data covers all the frequency coefficients of this example. To test
the stability of the method, we reconstruct the mean value and the standard deviation or the
variance using different numbers of realization. This is equivalent to using data with different
level of error. Figure 1 shows the reconstructed mean value and variance and the exact ones with
different numbers of realizations. As expected, the relative L2([0, 1]) error “err” decreases from
err = 3.05×10−1 to err = 6.44×10−3 and from err = 1.16×10−1 to err = 4.00×10−3 for the mean
value and the variance, respectively, as the number of realization “nr” increases from nr = 103 to
nr = 106. It is obvious that the better reconstruction may be obtained when the more accurate
data is used. In fact, the reconstruction corresponding to the number of realizations nr = 106 is
actually indistinguishable from the exact functions from the graphs.

Example 2. Let

g(x) = 0.4

[
(1− cos(3x))− 1215

2783
(1− cos(11x)) +

7

23
(1− cos(12x))

]
,

h(x) = 0.5e1 − 0.3ecos(2x) − 0.3ecos(3x),

reconstruct the mean value and the standard deviation given by

g2(x) = g(2πx) and h2(x) = h(2πx)

inside the interval [0, 1]. This example is more complicated than Example 1 since both func-
tions contain more higher frequency modes. Correspondingly, the data at high frequencies should
be computed to recover the mean value g2 and the standard deviation h2. For the reconstruc-
tion of the mean value g2, the scattering data u(0, ωk) is computed at discrete frequencies ωk =

12
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Figure 1: Example 1. (left) reconstruction of the mean value; (right) reconstruction of the variance.
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kπ, k = 1, 2, . . . , 16; while the scattering data u(0, ωk) is computed at frequencies ωk = kπ/2, k =
1, 2, . . . , 16, for the reconstruction of the standard deviation h2. Figure 2 shows the reconstructed
mean value and variance and the exact ones with different numbers of realizations. Not surprisingly,
the relative error decreases from err = 3.84× 10−1 to err = 9.15× 10−3 and from err = 1.67× 10−1

to err = 5.03× 10−3 for the mean value and the variance, respectively, as the number of realization
increases from nr = 103 to nr = 106.

Example 3. Reconstruct the mean value

g3(x) =


0.5 for 0.15 < x < 0.35
0.5 for 0.65 < x < 0.85
0 otherwise

and the standard deviation

h3(x) =

{
0.5 for 0.3 < x < 0.7
0 otherwise

inside the interval [0, 1]. In this example, the functions are discontinuous. It is well known that
the piecewise constant function contains infinitely many Fourier coefficients that decay slowly. To
show the effect of the maximum frequency on the reconstruction, we use the number of realization
nr = 106 to generate the data which is intended to reduce the effect of the data error. For
the reconstruction of the mean value g3, the scattering data u(0, ωk) is computed at frequencies
ωk = kπ, k = 1, 2, . . . , nw; while the scattering data u(0, ωk) is computed at ωk = kπ/2, k =
1, 2, . . . , nw, for the reconstruction of the standard deviation h2, where “nw” is the maximum
number of frequency. Figure 3 shows the reconstructed mean value and variance and the exact
ones with different numbers of frequencies. As one can see, the relative error decreases from
err = 3.13×10−1 to err = 1.90×10−1 and from err = 2.32×10−1 to err = 1.23×10−1 for the mean
value and the variance, respectively, as the number of frequency increases from nw = 8 to nw = 32.

In summary, the following observations can be made from Figure 1 to Figure 3. When the
functions contain few low Fourier modes or fast decaying Fourier coefficients, accurate and sta-
ble reconstructions can be obtained easily. When the functions are discontinuous, the oscillatory
behavior near the discontinuities displays the well-known Gibbs phenomenon. To encounter this
challenge, we have also implemented an alternative approach of the ℓ1-minimization based method
together with the Bregman iteration for all presented three examples. Generally speaking, the
alternative approach produces similar results for smooth functions and may reduce the oscillations
for discontinuous functions if appropriate parameters are chosen in the iteration. However, we feel
the alternative approach is beyond the scope of the current paper, since our main intention is to
report the novel numerical methods to reconstruct random source functions from boundary mea-
surements. And thus we decide to only show the numerical results based on filtered backprojection
algorithm which involves just one FFT in the computation.

4 Concluding remarks

We studied an inverse problem for the stochastic Helmholtz equation in one dimension with a
random source function. Based on integrated solution method, we formulated the model problem
as a two-point stochastic boundary value problem and derived an integral equation for the solution
which sets up the relation between the data and the target functions through FFT. The method
is extremely efficient and accurate for smooth functions. Although we only consider Gaussian
random field in this paper, the strategy can be extended to other types of randomness in the
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Figure 2: Example 2. (left) reconstruction of the mean value; (right) reconstruction of the variance.
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Figure 3: Example 3. (left) reconstruction of the mean value; (right) reconstruction of the variance.
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source function with minor modification. Furthermore, the techniques used in this paper can be
naturally generalized to two and three dimensional problems. We are currently investigating the
inverse random source problem in inhomogeneous background medium and will report the progress
elsewhere in the future.

References

[1] R. Albanese and P. Monk, The inverse source problem for Maxwell’s equations, Inverse Prob-
lems, 22 (2006), 1023–1035.

[2] H. Ammari, G. Bao, and J. Fleming, An inverse source problem for Maxwell’s equations in
magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369–1382.

[3] M. Badieirostami, A. Adibi, H. Zhou, and S. Chow, Model for efficient simulation of spatially
incoherent light using the Wiener chaos expansion method, Opt. Lett., 32 (2007), 3188–3190.

[4] G. Bao, S.-N. Chow, P. Li, and H. Zhou, Numerical solution of an inverse medium scattering
problem with a stochastic source, preprint.

[5] G. Bao, J. Lin, and F. Triki, A multi-frequency inverse source problem, preprint.

[6] N. Bleistein and J. Cohen, Nonuniqueness in the inverse source problem in acoustic and elec-
tromagnetics, J. Math. Phys., 18 (1977), 194–201.

[7] Y.-Z. Cao, R. Zhang, and K. Zhang, Finite element and discontinuous Galerkin method for
stochastic Helmholtz equation in two- and three-dimensions, J. Comput. Math., 25 (2007),
368–373.

[8] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), 489–
509.

[9] Y. Chen and V. Rokhlin, On the inverse scattering problem for the Helmholtz equation in one
dimension, Inverse Problems, 8 (1992), 365–391.

[10] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed.,
Appl. Math. Sci. 93, Springer-Verlag, Berlin, 1998.

[11] A. Devaney, The inverse problem for random sources, J. Math. Phys., 20 (1979), 1687–1691.

[12] A. Devaney, E. Marengo, and M. Li, The inverse source problem in nonhomogeneous back-
ground media, SIAM J. Appl. Math., 67 (2007), 1353–1378.

[13] A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE
Trans. Antennas Propagat., 30 (1982), 1034–1037.

[14] M. Eller and N. Valdivia, Acoustic source identification using multiple frequency information,
Inverse Problems, 25 (2009), 115005.

[15] I. M. Gelfand and B. M. Levitan, On the determination of a differential equation from its
spetral functions, Amer. Math. Soc. Transl. Ser. 2, 1 (1955), 253–304.

17
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