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Abstract

For probability measures on a complete separable metric space, we present sufficient
conditions for the existence of a solution to the Kantorovich transportation problem.
We also obtain sufficient conditions (which sometimes also become necessary) for the
convergence of probability measures in the transportation distance when the cost function
is a continuous and non-decreasing function of the metric. As an application, the CLT
in the transportation distance is proved for independent, strongly mixing and associated
sequences.
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1 Introduction

Let (M,d) be a metric space and let c : M ×M → R, be a non-negative Borel function. The
transportation c-distance Tc(µ, ν) between two probability measures µ and ν defined on the
Borel σ-field B(M) is given via

Tc(µ, ν) = inf Ec(X,Y ).

Above, the infimum is taken over all M -valued random elements X and Y defined on the
probability space (Ω,F ,P) and having, respectively, µ and ν for probability distribution. In
other words,

Tc(µ, ν) = inf
Π

∫

c(x, y)dπ(x, y), (1)

where the infimum is taken over the set Π of all probability measures on B(M ×M) with
marginals µ and ν. The transportation distance is related to the celebrated Kantorovich
transportation problem: if µ and ν are two distributions of mass and if c(x, y) represents the
cost of transporting a unit of mass from the location x to the location y, what is the minimal
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total transportation cost to transfer µ to ν? The minimal total transportation cost is exactly
the transportation distance corresponding to the cost function c.

The c-transportation distance with c(x, y) = dp(x, y), p ≥ 1, is associated to the Wasser-
stein or Mallows p-distance Wp, Wp(µ, ν) = (Tdp(µ, ν))1/p. If M is the real line R with the
Euclidean distance, the Wasserstein-Mallows p-distance between two distribution functions
F and G has the following useful representation

W p
p (F,G) =

∫ 1

0
|F−1(t)−G−1(t)|pdt, (2)

where the inverse transformation of F is defined as

F−1(t) = sup{x ∈ R : F (x) ≤ t}.

The representation (2) was obtained when p = 1 by Salvemini [20] (for discrete distributions)
and by Dall’Aglio [7] (in the general case), while for p = 2 it is due to Mallows [14]. It
implies that the random variables X = F −1(U) and Y = G−1(U), where U is a uniform
random variable on (0, 1), are minimizers of the total transportation cost in the transportation
problem. Major [13] generalized (2) to a convex cost function c(x, y) = c(x− y):

Tc(F,G) =

∫ 1

0
c(F−1(t)−G−1(t))dt.

The representation (2) is an important tool in proving the following convergence result.
Let p = 1, 2 and let Fn, F be distribution functions on R such that for any n,

∫

|x|pdFn <
+∞, and

∫

|x|pdF < +∞. Then

Wp(Fn, F )→ 0⇐⇒
{

(a) Fn =⇒ F,

(b)
∫

|x|pdFn →
∫

|x|pdF.
(3)

For p = 1 the equivalence (3) was proved by Dobrushin [8], while for p = 2 it is due to
Mallows [14].

Bickel and Freedman [2] extended the statement (3) to probability measures µn and µ
defined on a separable Banach space (B, ‖ · ‖) and to all p ∈ [1,+∞) as follows:

Let 1 ≤ p < ∞, and let
∫

‖x‖pµn(dx) < ∞,
∫

‖x‖pµ(dx) < ∞. Then Wp(µn, µ) → 0 as
n→∞ is equivalent to each of the following.

(a) µn =⇒ µ and
∫

‖x‖pµn(dx)→
∫

‖x‖pµ(dx).
(b) µn =⇒ µ and ‖ · ‖p is uniformly µn-integrable.
(c)

∫

φ(x)µn(dx) →
∫

φ(x)µ(dx) for every continuous φ such that φ(x) = O(‖x‖p) at
infinity.

Since in general an analog of the representation (2) does not exist for probability measures
on a Banach space, Bickel and Freedman proved, in their setting, the existence of a solution
to the transportation problem for c(x, y) = ‖x− y‖p.

More recently, Ambrosio, Gigli, and Savaré proved ([1], Proposition 7.1.5) an analog of
part (b) of the above result for probability measures on a Radon space X (see also Lemma
5.1.7 and Remark 7.1.11 there). These authors also established the existence of a solution
to the Kantorovich transportation problem in X for a wide class of cost functions. We use
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this existence result to prove criteria for the convergence in Tc with c(x, y) = C(d(x, y)),
where C is a non-decreasing continuous function satisfying the doubling condition (6) which
controls the rate of growth of C (Theorem 2 and Corollary 1). Since the class of such cost
functions includes all the dps, p ≥ 1, the convergence results of Bickel and Freedman as well as
those of Ambrosio et al. follow from our Corollary 1. Note that instead of the Radon space
X (a separable metric space where, by definition, every probability measure is tight), we
consider here a more familiar probabilistic object, a complete separable space (M,d). In our
framework, completeness and separability together will provide tightness; all our arguments
remain true for Radon spaces (see also Remark 1).

In Theorem 2 we also obtain sufficient conditions for the convergence of probability mea-
sures in the transportation distance without assuming the doubling condition on C. For
instance, any convex C : R+ → R+ with C(0) = 0 satisfies Theorem 2. We then provide an
example of a C growing exponentially fast for which the converse implication does not hold.

2 Convergence in Transportation Distance

The following result by Ambrosio et al. [1] asserts the existence in Π of a probability measure
which minimizes the total transportation cost under rather weak assumptions on the cost
function. For the sake of completeness, we include a self-contained proof in Section 4.

Theorem 1. Let (M,d) be a complete separable metric space, and let Tc(µ, ν) be defined by
(1) with c : M ×M → [0,+∞) lower semicontinuous. Then, there exists π∗ ∈ Π such that
∫

c(x, y)dπ∗(x, y) = Tc(µ, ν). Equivalently, there exists a pair of random elements X and Y
with respective distribution µ and ν, such that Ec(X,Y ) = Tc(µ, ν).

Remark 1. In the corresponding statement in [1] the space (M,d) need not be a complete
separable metric space but just a Radon space. In fact, our proof also shows that completeness
is unnecessary and that the tightness of µ and ν will suffice. On the other hand, the hypothesis
of separability of (M,d) can be weakened to topological separability if both µ and ν have
separable supports (see Billingsley [3], Appendix III).

The Kantorovich problem is closely related to the Monge transportation problem which
is the problem of finding a map s∗ pushing µ forward to ν (i.e. such that ν(B) = µ(s−1(B))
for any Borel set B) and minimizing the total transportation cost: inf s

∫

c(x, s(x))dµ =
∫

c(x, s∗(x))dµ, where the infimum is taken over all Borel maps s pushing µ forward to
ν. A solution s∗ to the Monge transportation problem uniquely determines a probability
measure π∗ on M ×M such that the random elements X and Y , Y = s∗(X), with respective
distributions µ and ν have joint law π∗. This measure π∗ minimizes the Monge transportation
cost:

∫

c(x, y)dπ∗(x, y) = inf
Π∗

∫

c(x, y)dπ(x, y), (4)

where the infimum is taken over the set Π∗ of joint distributions of M -valued random elements
X and Y with respective distributions µ and ν and such that Y is measurable with respect to
the Borel field σ(X). Comparing (4) and (1) yields the relation Π∗ ⊂ Π, which immediately
leads to the following conclusions: (i) the (Kantorovich) transportation distance Tc(µ, ν)
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never exceeds the Monge transportation distance T̃c(µ, ν),

T̃c(µ, ν) = inf
Π∗

∫

c(x, y)dπ(x, y) = inf
s

∫

c(x, s(x))dµ;

(ii) a probability measure π∗ corresponding to the solution s∗ of the Monge transportation
problem (MTP) is not necessarily a solution to the Kantorovich transportation problem
(KTP); conversely, a solution π′ of the KTP, where π′ is the joint distribution of X and Y ,
is a solution to the MTP if and only if there exists a Borel map s′ such that Y = s′(X).

For random elements X and Y in a Hilbert space Cuesta and Matran [6] have given
conditions for the existence of an increasing map s, s(X) = Y , such that W 2

2 (µ, ν) = E‖X −
s(X)‖2, i.e. X and Y = s(X) give the solution to both the MTP and the KTP. They also
showed that if µ is either absolutely continuous with respect to the Lebesgue measure on
Rk or is a Gaussian measure on a Hilbert space, then these conditions are satisfied. For
compactly supported absolutely continuous distributions on Rk and a convex cost function
c(x − y) Caffarelli [5] has determined the form of the optimal map (the solution to the
MTP) as a gradient of c; the uniqueness of the solution is also obtained there. Concurrently,
Gangbo and McCann [10] proved the same results for non-necessarily boundedly supported
probability measures. They also showed that the solution to the MTP is the KTP solution as
well, and that a similar result holds true for c(x, y) = `(‖x− y‖), where ` is strictly concave.
Note that in all the existence statements mentioned above, the conditions of Theorem 1 are
satisfied. A comprehensive review of the results on the solutions to the KTP and the MTP
can be found in the books of Rachev and Rüschendorf [18].

The main result of the work presented here is now given.

Theorem 2. Let µn and µ be probability measures on a complete separable metric space
(M,d) and let c : M×M → R be such that c(x, y) = C(d(x, y)), where C : [0,+∞)→ [0,+∞)
is a non-decreasing continuous function with C(0) = 0. Let

∫

C(2d(x, a))µn(dx) <∞,

∫

C(2d(x, a))µ(dx) <∞, (5)

for some (and, therefore, for all) a ∈M . Then

(a) µn =⇒ µ,

(b)

∫

C(2d(x, a))µn(dx)→
∫

C(2d(x, a))µ(dx)







=⇒ Tc(µn, µ)→ 0.

Conversely, if Tc(µn, µ)→ 0, then µn =⇒ µ. If, additionally, C satisfies a doubling condition,
i.e. if there exists a positive constant λ such that for all y ≥ 0

C(2y) ≤ λC(y), (6)

then

Tc(µn, µ)→ 0⇐⇒
{

(a) µn =⇒ µ,

(b)
∫

C(2d(x, a))µn(dx)→
∫

C(2d(x, a))µ(dx).

Corollary 1. If, in the setting of Theorem 2, C satisfies (6), then
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(6)⇐⇒
∫

C(d(x, a))µn(dx) <∞,

∫

C(d(x, a))µ(dx) <∞,

and thus

Tc(µn, µ)→ 0⇐⇒
{

(a) µn =⇒ µ,

(b′)
∫

C(d(x, a))µn(dx)→
∫

C(d(x, a))µ(dx).

Corollary 1 is equivalent to a result of Rachev (Theorem 1 in [17]) proved by using the
relations between the Lévy-Prokhorov metric and the Tc-distance. Since for any p ≥ 1, the
function c(x, y) = dp(x, y) satisfies the conditions of Theorem 2 as well as (6) with λ = 2p,
Corollary 1 recovers part (a) in the result of Bickel and Freedman mentioned above. Ambrosio
et al. proved an analog of Theorem 2 in a Hilbert space when the cost function is continuous,
strictly increasing and surjective ([1], Theorem 5.1.13).

Note that the class of functions C covered by Theorem 2 includes functions with an
exponential rate of growth at infinity (e.g. C(d(x, y)) = exp(d(x, y)) − 1). For functions C
growing exponentially fast at infinity, and in contrast to C(d(x, y)) = dp(x, y), Tc(µn, µ)→ 0
need not imply the convergence of

∫

C(2d(x, a))µn(dx) to
∫

C(2d(x, a))µ(dx), for some a ∈
M . Indeed, one can take the probability measures µn and µ on R defined in Example 1,
below, and c(x, y) = C(|x− y|) = exp(|x− y|)− 1.

As a corollary to Theorem 2 we obtain the following result relating convergence in to-
tal variation to convergence in transportation distance. As well known, the total variation
distance itself is a particular case of transportation distance (with c(x, y) = 21{x 6=y}).

Corollary 2. Let µ and ν be compactly supported probability measures on a complete sepa-
rable metric space (M,d), and let φ be a continuous function on (M,d). Then

∣

∣

∣

∣

∫

φ(x)µ(dx) −
∫

φ(x)ν(dx)

∣

∣

∣

∣

≤ Lφ‖µ− ν‖TV ,

for some positive constant Lφ.
Let µn be probability measures on M with respective compact supports Kn, n ≥ 1. Let

∪nKn be bounded. If c(x, y) = C(d(x, y)), where C : [0,+∞) → [0,+∞) is non-decreasing,
continuous with C(0) = 0, then

‖µn − µ‖TV → 0⇒ Tc(µn, µ)→ 0.

Without the boundedness restriction on ∪Kn the last implication is not true, as the
following example shows.

Example 1. Let µ be the uniform distribution on [0, 1] and, for all n ∈ N, let

µn(dx) =
n− 1

n
1[0,1](x)dx +

1

n
δxn(dx),

xn /∈ [0, 1]. Then

‖µn − µ‖TV =

∫ 1

0

1

n
dx + µn(xn) =

2

n
→ 0
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as n → ∞. Hence µn
TV−→ µ, for any choice of the sequence (xn). Let c(x, y) = C(|x − y|),

with C : [0,+∞)→ [0,+∞), C(0) = 0, convex, also satisfying (6). Then,

∫

C(|x|)µ(dx) =

∫ 1

0
C(|x|)dx ≤ max

0≤|x|≤1
C(|x|) < +∞,

∫

C(|x|)µn(dx) =

∫ 1

0

n− 1

n
C(|x|)dx+µn(xn)C(|xn|) ≤ max

0≤|x|≤1
C(|x|)n− 1

n
+

C(|xn|)
n

< +∞,

for any n. So all the conditions of Corollary 1 are satisfied. Since weak convergence is
implied by convergence in total variation, Tc(µn, µ)→ 0 holds if and only if

∫

C(|x|)µn(dx)→
∫

C(|x|)µ(dx). Take xn = 2n, then C(|xn|) = C(2n) ≥ 2n−1C(2) and C(|xn|)/n → +∞ as
n→∞. Therefore,

∫

C(|x|)µn(dx) ≥ C(|xn|)
n

→ +∞ 6=
∫

C(|x|)µ(dx).

By Corollary 1, Tc(µn, µ) does not converge to 0.

3 Applications to the Central Limit Theorem

We now apply Theorem 2 to derive the CLT in the transportation distance. We obtain
sufficient conditions for the convergence of the distributions functions of the normalized sums
to the standard Gaussian distribution in R for strictly stationary independent, strongly
mixing or associated sequences. The CLT is also proved for non-stationary sequences of
independent random variables satisfying the Lyapunov condition.

3.1 Independent sequences

3.1.1 Stationary case

Let (Xn) be a sequence of independent identically distributed random variables, EX1 = 0,
EX2

1 = σ2, 0 < σ < +∞, Sn =
∑n

i=1 Xi. Let Fn denote a distribution function of the
normalized sum Sn/(σ

√
n), and let Φ be a distribution function of Z ∼ N(0, 1). Theorem 3

below provides additional conditions on the sequence (Xn) and on the cost function to obtain
the convergence of Fn to Φ in the transportation distance.

Theorem 3. (i) If E|X1|p < +∞ for some p ≥ 2, then Wp(Fn,Φ)→ 0.
(ii) Additionally, let c(x, y) = C(|x − y|), where C : [0,+∞) → [0,+∞) is a non-decreasing
continuous function with C(0) = 0 and C(x) = O(xp) at infinity. Then Tc(Fn,Φ)→ 0.

The CLT in the W2-distance was proved by Tanaka [24] for distributions on R and by
Cuesta and Matran [6] for distributions on a Hilbert space; both results require the finiteness
of the fourth moment. Recently, Johnson and Samworth [11], [12] proved Theorem 3(i)
by using the subadditivity of the Wasserstein distance. We prove this result by using an
inequality of Sakhanenko [19]; the arguments of the proof will be generalized to non-stationary
sequences in Theorem 4.
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3.1.2 Non-stationary case

Let (Xn) be a sequence of centered independent random variables with 0 < EX 2
n < +∞, for

all n, and let Fn be a distribution function of Sn/σn, where σ2
n =

∑n
i=1 EX2

i .

Theorem 4. (i) Let the random variables Xn, n ≥ 1, be such that E|Xn|p < +∞, for some
p > 2. Assume, moreover, that the Lyapunov condition,

lim
n→+∞

∑n
i=1 E|Xi|p

σp
n

= 0, (7)

holds true. Then Wp(Fn,Φ)→ 0.
(ii) If, additionally, the function c is as in Theorem 3 (ii), then Tc(Fn,Φ)→ 0.

3.2 Strongly mixing sequences

Let αn, n ≥ 1, be the coefficients of strong mixing of the sequence (Xn), i.e.

αn = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F k
1 , B ∈ F+∞

k+n, k ≥ 1},

where Fk+m
k is the σ-field generated by the random variables Xk, Xk+1, ..., Xk+m. Recall that

(Xn) is said to satisfy a strong mixing condition if αn → 0 as n→ +∞.
Among a variety of versions of the central limit theorem for strong mixing sequences (see

the recent survey of Merlevède et al. [15] and the references therein) the most suitable for our
purpose turns out to be the one proved by Doukhan et al. [9]. It takes the following form. Let
(Xn) be a strictly stationary strongly mixing sequence with EX1 = 0, 0 < EX2

1 < +∞ and
such that for a quantile function Q of |X1|, Q(u) = inf{t : P (|X1| > t) ≤ u}, the condition

∞
∑

n=1

∫ αn

0
Q2(u)du < +∞ (8)

is satisfied. Then, EX2
1 + 2

∑∞
n=2 Cov(X1, Xn) = σ2 < +∞, (ES2

n)/n→ σ2, and

Sn

σ
√

n

d−→ Z ∼ N(0, 1),

where once again Sn =
∑n

i=1 Xi.
To obtain the convergence of the distribution functions Fn of Sn/(σ

√
n) to Φ in the

transportation distance, we need an additional restriction on the rate of decay of the mixing
coefficient αn in order to provide a moment bound for sums. Such a result, due to Shao and
Yu [22], asserts that if (Xn) is a centered strongly mixing sequence with

E|Xn|p+δ < +∞, αn ≤ Cn− p(p+δ)
2δ , (9)

for some p > 2, δ > 0, n ≥ 1, then

E|Sn|p ≤ Kn
p

2 max
1≤i≤n

(E|Xi|p+δ)
p

p+δ , (10)

where the positive constant K depends on p, δ and C only.
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Theorem 5. (i) For any centered strictly stationary random sequence (Xn) with strong
mixing coefficients satisfying the condition (9), we have Wp(Fn,Φ)→ 0.
(ii) If, moreover, c is as in Theorem 3 (ii), then Tc(Fn,Φ)→ 0.

To prove Theorem 5, we apply Theorem 2. Since the CLT of Doukhan et al. implies
the weak convergence to the standard Gaussian distribution, it is sufficient to verify the
convergence of the absolute moments of order p for the normalized sums.

3.3 Associated sequences

3.3.1 Negatively associated sequences

Recall that a set of random variables ξ = (ξ1, ..., ξm) is called negatively associated (NA) if
for any two coordinatewise increasing functions f, g : Rm → R such that Ef(ξ)g(ξ), Ef(ξ)
and Eg(ξ) exist,

Cov (f(ξ), g(ξ)) ≤ 0. (11)

An infinite set of random variables is NA if all of its finite subsets are NA.
Su et al. [23] proved a CLT for NA sequence in the following form. Let (Xn) be a

strictly stationary NA sequence with EX1 = 0 and 0 < EX2
1 < +∞. Let σ2 = EX2

1 +
2
∑∞

n=2 Cov(X1, Xn) > 0 (σ2 ≤ EX2
1 follows from (11)). Then (ES2

n)/n→ σ2, and

Sn

σ
√

n

d−→ Z ∼ N(0, 1).

For NA sequence (Xn) with E|Xn|p < +∞, n ≥ 1 and p ≥ 1, Shao [21] established the
following property. Let (X∗

n) be a sequence of independent random variables such that, for
all n ≥ 1, X∗

n and Xn have the same distribution. Then

E|Sn|p ≤ E|S∗
n|p, (12)

where S∗
n =

∑n
i=1 X∗

i .

Theorem 6. Let (Xn) be a centered strictly stationary NA sequence with σ2 > 0 and
E|X1|p < +∞, p ≥ 2. Then, the sequence of distribution functions Fn of the normalized
sums Sn/(σ

√
n) converges to Φ in Wp-distance.

(ii) If, additionally, c is as in Theorem 3 (ii), then Tc(Fn,Φ)→ 0.

3.3.2 Positively associated sequences

A finite set of random variables ξ = (ξ1, ..., ξm) is called positively associated (PA) if the
inequality (11) holds true with ”≤” replaced by ”≥”. An infinite set of random variables is
PA if all of its finite subsets are PA.

Newman and Wright [16] obtained the following version of the CLT. Let (Xn) be a
centered strictly stationary PA sequence such that 0 < EX 2

1 < +∞ and σ2 = EX2
1 +

2
∑∞

n=2 Cov(X1, Xn) < +∞. Then (ES2
n)/n→ σ2, and

Sn

σ
√

n

d−→ Z ∼ N(0, 1).
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Asymptotic independence for PA sequence (Xn) is usually stated in terms of the Cox-
Grimmett coefficient u(n) defined by:

u(n) = sup
k≥1

∑

j:|j−k|≥n

Cov(Xj , Xk).

For a stationary sequence the Cox-Grimmett coefficient is just the tail of the series of covari-
ances, u(n) = 2

∑∞
k=n+1 Cov(X1, Xk).

To prove the convergence of Fn to Φ in the transportation distance, we use a condition
on the rate of decay of the Cox-Grimmett coefficient. This condition implies the following
moment inequality for sums due to Birkel [4]. If (Xn) is a centered PA sequence with

E|X1|p+δ < +∞, u(n) ≤ Bn− (p−2)(p+δ)
2δ , (13)

for some p > 2 and δ > 0, then
E|Sn|p ≤ Kn

p
2 , (14)

where the positive constant K depends only on B, δ and p.

Theorem 7. Let (Xn) be a centered strictly stationary PA sequence with 0 < σ2 < +∞ and
such that (13) is satisfied. Then the distribution functions Fn of Sn/(σ

√
n) converge to Φ in

Wp-distance.
(ii) If, additionally, c is as in Theorem 3 (ii), then Tc(Fn,Φ)→ 0.

4 Proofs

Proof of Theorem 1. We first show that Π, the set of probability measures on B(M ×M)
with marginals µ and ν, is tight. Indeed, for any positive ε there exist compact sets K1,
K2 ∈ B(M), such that µ(K1) ≥ 1 − ε

2 and ν(K2) ≥ 1 − ε
2 . Let π ∈ Π and let (X,Y ) be a

random vector with law π. Then,

π(K1 ×K2) = P (X ∈ K1, Y ∈ K2) = P (X ∈ K1) + P (Y ∈ K2)− P ((X ∈ K1) ∪ (Y ∈ K2))

≥ µ(K1) + ν(K2)− 1 ≥ (1− ε/2) + (1− ε/2) − 1 = 1− ε.
(15)

Since (15) holds for all π ∈ Π with the same compact set K1 × K2, this proves that Π is
tight. Therefore, according to Prokhorov’s theorem (Billingsley [3], Section 5), Π is relatively
compact.

If Tc(µ, ν) = +∞, then
∫

c(x, y)dπ(x, y) = +∞, for all π ∈ Π and π∗ can be chosen to be
any probability measure from Π.

If Tc(µ, ν) < +∞, then there exists a sequence πn from Π such that

∫

c(x, y)dπn(x, y)→ Tc(µ, ν). (16)

On the other hand, the relative compactness of Π implies the existence of a subsequence πnk

which converges weakly to some probability measure π on B(M ×M). Let us verify that π is
the measure π∗ we are looking for. First, we want to prove that π ∈ Π, i.e. that the marginal
distributions of π are µ and ν, respectively.
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Let µ1 and ν1 be marginals of π. We will check that µ1(B) = µ(B), for any B ∈ B(M)
such that µ1(∂B) = 0. Indeed, since ∂(B×M) ⊂ (∂B×M)∪(B×∂M) = ∂B×M (Billingsley
[3], (2.8)), we have

π(∂(B ×M)) ≤ π(∂B ×M) = µ1(∂B) = 0.

Therefore, the weak convergence πnk
⇒ π implies that πnk

(B ×M) → π(B ×M), and we
obtain

µ(B) = πnk
(B ×M)→ π(B ×M) = µ1(B).

Similarly, we can show that ν1(B) = ν(B), for any B ∈ B(M) such that ν1(∂B) = 0. Finally,
it remains to check that two probability measures µ1 and µ (respectively ν1 and ν) are
the same if they coincide on the Borel sets having a boundary of µ1-measure (respectively
ν1-measure) zero.

Let D ∈ B(M) be a closed set. For ε > 0, let Dε = {x ∈ M : d(x,D) < ε} and let
D = {Dε, 0 < ε < 1}. Then there exists at most a countable number of εk, 0 < εk < 1, such
that sets Dεk have a boundary of positive µ1-measure. We remove the sets Dεk from D, and
obtain

D0 = {Dε, 0 < ε < 1, µ1(∂Dε) = 0}.
We can then choose a decreasing sequence εn → 0, 0 < εn < 1, with Dn = Dεn ∈ D0. The sets
Dn are such that: (a) Dn+1 ⊂ Dn for all n; (b)

⋂

n Dn = D ∪ ∂D = D; (c) µ1(Dn) = µ(Dn).
The properties (a)–(c) yield

µ1(D) = µ1(
⋂

n

Dn) = lim
n→∞

µ1(Dn) = lim
n→∞

µ(Dn) = µ(D).

Therefore, the measures µ1 and µ coincide on all the closed subsets of M . Since B(M) is
generated by such sets, we conclude that µ1 = µ. Similar arguments lead to ν1 = ν. We have
proved that the probability measure π has respective marginals µ and ν, i.e. π ∈ Π.

Next, we will check that
∫

c(x, y)dπ(x, y) = Tc(µ, ν). Since c is lower semicontinuous, for
any real b the set {(x, y) : c(x, y) > b} is open ([3], Appendix I). Let A = {(x, y) : c(x, y) > 0}.
Then the weak convergence πnk

=⇒ π and (16) imply that

∫

c(x, y)dπ(x, y) =

∫

A
c(x, y)dπ(x, y)

≤ lim inf
nk

∫

A
c(x, y)dπnk

(x, y)

= lim inf
nk

∫

c(x, y)dπnk
(x, y)

= Tc(µ, ν).

Since π ∈ Π, the reverse inequality
∫

c(x, y)dπ(x, y) ≥ Tc(µ, ν) holds true. We thus conclude
that

∫

c(x, y)dπ(x, y) = Tc(µ, ν). In other words, the transportation distance becomes the
total transportation cost associated to the measure π. Finally, we set π∗ = π and the proof
is now complete.
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Proof of Theorem 2 and Corollary 1. Assume that both (a) and (b) are satisfied. Let
X, Xn be random elements with respective distributions µ and µn and such that X and
Xn are independent, for any n. Then (C(2d(Xn, a))) is uniformly bounded, that is I1 =
supn EC(2d(Xn, a)) <∞. Set I2 = EC(2d(X, a)) <∞.

Fix ε > 0 and choose a compact set K1 in B(M) such that µ(∂K1) = 0 and

∫

Kc
1

C(2d(x, a))dµ(x) < ε.

The weak convergence µn =⇒ µ implies the tightness of the family (µn, µ)n≥1, thus there
exists a compact set K2 ∈ B(M) such that µn(Kc

2) < ε, µ(Kc
2) < ε and µ(∂K2) = 0. Let

K = K1 ∪K2. Then K is compact, and

∫

Kc

C(2d(x, a))dµ(x) < ε, (17)

µn(Kc) < ε, µ(Kc) < ε, (18)

with also µ(∂K) = 0, since µ(∂K) ≤ µ(∂K1) + µ(∂K2). Since (b) holds, we can choose a
positive integer N1 such that for any n ≥ N1,

∣

∣

∣

∣

∫

C(2d(x, a))dµn(x)−
∫

C(2d(x, a))dµ(x)

∣

∣

∣

∣

< ε. (19)

As Xn
d−→ X, for the chosen compact set K and the continuous function C(2d(·, a)) we have

EC(2d(Xn, a))1{Xn∈K} → EC(2d(X, a))1{X∈K}.

Hence, we can choose a positive integer N2 such that, for any n ≥ N2,

∣

∣

∣

∣

∫

K
C(2d(x, a))dµn(x)−

∫

K
C(2d(x, a))dµ(x)

∣

∣

∣

∣

< ε. (20)

Then for n ≥ max{N1, N2}, the estimates (17), (19) and (20) yield

∣

∣

∣

∣

∫

Kc

C(2d(x, a))dµn(x)|

≤
∣

∣

∣

∣

∫

C(2d(x, a))dµn(x)−
∫

C(2d(x, a))dµ(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

K
C(2d(x, a))dµn(x)−

∫

K
C(2d(x, a))dµ(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Kc

C(2d(x, a))dµ(x)

∣

∣

∣

∣

< 3ε.

(21)

The weak convergence Xn
d−→ X implies that C(2d(Xn, X))1{Xn∈K, X∈K}

d−→ 0. The con-
tinuous function C(d(x, y)) is bounded on the compact set K ×K, therefore

EC(d(Xn, X))1{Xn∈K, X∈K} → 0.

11



This means that there exists a positive integer N3 such that, for any n ≥ N3,

∣

∣

∣

∣

∫

K

∫

K
C(d(Xn, X))dπn(x, y)

∣

∣

∣

∣

< ε, (22)

where πn is the joint distribution of Xn and X.
Since C is a non-negative and non-decreasing,

C(d(x, y)) ≤ C(d(x, a) + d(y, a)) ≤ C(2max{d(x, a), d(y, a)})
≤ C(2d(x, a)) + C(2d(y, a)),

(23)

for all x, y ∈M .
Using the inequalities (17), (18), (21), (23), and the independence of Xn and X, we have:

∫

Kc

∫

Kc

C(d(x, y))dπn(x, y) = EC(d(Xn, X))1{Xn∈Kc, X∈Kc}

≤ EC(2d(Xn, a))1{Xn∈Kc}1{X∈Kc} + EC(2d(X, a))1{X∈Kc}1{Xn∈Kc}

≤
(

∫

Kc

C(2d(x, a))dµn(x)

)

µ(Kc) +

(
∫

Kc

C(2d(x, a))dµ(x)

)

µn(Kc)

< 3ε2 + ε2,

(24)

for all n ≥ max{N1, N2}. Similarly,

∫

K

∫

Kc

C(d(x, y))dπn(x, y) = EC(d(Xn, X))1{Xn∈K, X∈Kc}

≤ EC(2d(Xn, a))1{Xn∈K}1{X∈Kc} + EC(2d(X, a))1{X∈Kc}1{Xn∈K}

≤ I1µ(Kc) + εµn(K)

< I1ε + ε,

(25)

and
∫

Kc

∫

K
C(d(x, y))dπn(x, y) = EC(d(Xn, X))1{Xn∈Kc, X∈K}

≤ EC(2d(Xn, a))1{Xn∈Kc}1{X∈K} + EC(2d(X, a))1{X∈K}1{Xn∈Kc}

≤ 3εµ(K) + I2µn(Kc) < 3ε + I2ε,

(26)

for n ≥ max{N1, N2}.
Thus for n ≥ max{N1, N2, N3} the inequalities (22), (24)–(26) yield

Tc(µn, µ) ≤ EC(d(Xn, X)) =

∫ ∫

C(d(x, y))dπn(x, y)

=

∫

K

∫

K
C(d(x, y))dπn(x, y) +

∫

Kc

∫

Kc

C(d(x, y))dπn(x, y)

+

∫

K

∫

Kc

C(d(x, y))dπn(x, y) +

∫

Kc

∫

K
C(d(x, y))dπn(x, y)

≤ ε(6 + 4ε + I1 + I2).

We conclude that (a) and (b) imply Tc(µn, µ)→ 0.

12



Next, we assume that Tc(µn, µ)→ 0 and verify that (a) µn =⇒ µ takes place. According
to Theorem 1, for any n there exists a pair of random elements Xn and X with distributions
µn and µ, respectively, which are minimizers of the total transportation cost: Tc(µn, µ) =
EC(d(Xn, X)). Let us note that X may depend on n, so each time it appears in this proof,
we assume that X = X (n). (Of course all the X (n) have the same law µ.)

Since C is a non-negative function, EC(d(Xn, X))→ 0, that is C(d(Xn, X))
L1−→ 0. This

implies that

C(d(Xn, X))
P−→ 0. (27)

Fix ε > 0. As C is non-decreasing, we have

{d(Xn, X) > ε} ⊂ {C(d(Xn, X)) ≥ C(ε)}.

The convergence result (27) implies that the probability of the last event tends to 0, for
any positive C(ε), as n → ∞. Hence for any ε > 0, P (d(Xn, X) > ε) → 0, as n → ∞.

The convergence, in probability, of d(Xn, X) = d(Xn, X(n))
P−→ 0 implies that µn =⇒ µ

(Billingsley [3], theorem 4.1).
Now, assume that the doubling condition (6) is satisfied and let us verify that Tc(µn, µ)→

0 implies (b′). Since µn =⇒ µ and since C(d(·, a)) is continuous on M , weak convergence

holds: C(d(Xn, a)
d−→ C(d(X, a)). In order to verify (b′), it thus suffices to check that the

sequence (C(d(Xn, a))) is uniformly integrable. Uniform integrability is equivalent to the pair
of conditions: (i) (EC(d(Xn, a))) is uniformly bounded and (ii) for A ∈ F , (EC(d(Xn, a))1A)
is uniformly continuous, (i.e. supn EC(d(Xn, a))1A → 0 as P (A)→ 0).

Together (6) and (23) yield the inequalities

C(d(x, a)) ≤ λC

(

1

2
d(x, a)

)

≤ λC(d(x, y)) + λC(d(y, a)), (28)

for all x, y ∈M and the positive constant λ. Then

EC(d(Xn, X)) ≥ 1

λ
EC(d(Xn, a))−EC(d(X, a)). (29)

Suppose that (EC(d(Xn, a))) is not uniformly bounded. Then there exists a subsequence
(EC(d(Xn′ , a))) such that EC(d(Xn′ , a)) → +∞. Applying (29) to this subsequence, we
come to the following contradiction:

0← EC(d(Xn, X)) ≥ 1

λ
EC(d(Xn′ , a))−EC(d(X, a))→ +∞.

Thus, (EC(d(Xn, a))) is uniformly bounded.
Let ε be fixed, and let A ∈ F . Since Tc(µn, µ) → 0, we can choose a positive integer N

such that EC(d(Xn, X))1A < ε, for all n ≥ N . By applying once again the inequality (29),
we obtain

sup
n≥N

EC(d(Xn, a))1A ≤ λ sup
n

EC(d(Xn, X))1A + λEC(d(X, a))1A.

Let P (A) → 0. Since (C(d(Xn, X))) is uniformly integrable and since EC(d(X, a)) ≤
EC(2d(X, a)) <∞,

sup
n≥N

EC(d(Xn, a))1A → 0,

13



i.e. (EC(d(Xn, a))1A) is uniformly continuous. Hence, the sequence (C(d(Xn, a))) is uni-
formly integrable and (b′)

∫

C(d(x, a))dµn →
∫

C(d(x, a))dµ holds.
Note that from (6) and since C is non-decreasing, the following two inequalities hold true

C(2d(x, a)) ≤ λC(d(x, a)), C(d(x, a)) ≤ C(2d(x, a)),

for any x ∈M . This implies that
(
∫

C(d(x, a))µn(dx) < ∞) ⇐⇒ (
∫

C(2d(x, a))µn(dx) < ∞) and that (
∫

C(d(x, a))µ(dx) <
∞) ⇐⇒ (

∫

C(2d(x, a))µ(dx) < ∞). Therefore, in the setting of the theorem, the sequences
(C(d(Xn, a))) and (C(2d(Xn, a))) are both either uniformly integrable or not, and (b)⇐⇒
(b′).

This observation completes the proof of Theorem 2 and of Corollary 1.

Proof of Corollary 2. Let K1 and K2 be the respective supports of µ and ν. If µ and ν
are absolutely continuous with respective densities f1 and f2, then

∣

∣

∣

∣

∫

φ(x)dµ−
∫

φ(x)dν

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

φ(x)f1(x)dx−
∫

φ(x)f2(x)dx

∣

∣

∣

∣

≤
∫

K1∪K2

|φ(x)||f1(x)− f2(x)|dx

≤ Lφ‖µ− ν‖TV ,

where Lφ = sup{|φ(x)| : x ∈ (K1 ∪K2)} (here A = A ∪ ∂A).
To prove the result in the general case, let the partition (Am)m∈Z of M , Am ∈ B(M), be

defined as follows:
Am = {x ∈M : m− 1 ≤ φ(x) < m}.

Thus,
∣

∣

∣

∣

∫

φ(x)dµ−
∫

φ(x)dν

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

+∞
∑

m=−∞

∫

φ(x)1Amd(µ− ν)

∣

∣

∣

∣

∣

≤
+∞
∑

m=−∞

|m‖µ(Am)− ν(Am)|

≤ Lφ‖µ− ν‖TV ,

(30)

where Lφ is defined as above, and where we used the dual definition of the total variation
distance.

Let µn and µ be probability measures on M with compact supports respectively denoted
Kn and K. Let also ∪nKn be bounded and ‖µn− µ‖TV → 0. Convergence in total variation
implies weak convergence µn =⇒ µ. All the conditions of Theorem 2 are satisfied. Therefore,
to prove the convergence of µn to µ in Tc, it suffices to check that

∫

C(2d(x, a))dµn →
∫

C(2d(x, a))dµ, for some a ∈M . The inequality (30) yields, for any n,
∣

∣

∣

∣

∫

φ(x)dµn −
∫

φ(x)dµ

∣

∣

∣

∣

≤ Lφ‖µn − µ‖TV , (31)

where Lφ = sup{|φ(x)| : x ∈ ∪Kn} < ∞ does not depend on n. By fixing a ∈ M and
applying (31) to φ(x) = C(2d(x, a)), we obtain that convergence in total variation implies
the convergence of the integrals

∫

φ(x)dµn →
∫

φ(x)dµ. This completes the proof.
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Proof of Theorem 3. (i) First, we prove the statement for p > 2. Let F be the distribution
function of X1, X2, ... and, for a fixed n let η1, η2, ..., ηn be a set of i.i.d. normal random
variables with mean zero and variance 1/n. According to a result of Sakhanenko ([19],
Theorem 5), there exist i.i.d. random variables ξ1, ξ2, ..., ξn, each having the distribution
function Fξi

(x) = F (xσ
√

n) and such that

E max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

i=1

ξi −
k

∑

i=1

ηi

∣

∣

∣

∣

∣

p

≤ Cp2p
n

∑

i=1

E|Xi|p. (32)

Therefore, for Zn =
∑n

i=1 ηi, Zn ∼ N(0, 1), the following chain of inequalities is true:

W p
p (Fn,Φ) ≤ E

∣

∣

∣

∣

Sn

σ
√

n
− Zn

∣

∣

∣

∣

p

≤ E

∣

∣

∣

∣

∣

n
∑

i=1

ξi −
n

∑

i=1

ηi

∣

∣

∣

∣

∣

p

≤ Cp2pn
E|X1|p

σpn
p

2

= Cp2pn1− p
2 σ−pE|Xi|p → 0,

(33)

as n→∞.
Now, let p = 2. Let Z ∼ N(0, 1) and the sequence (Xn) be independent. We set

Yn = Sn/(σ
√

n) and verify that EY 2
n → EZ2.

Fix ε > 0 and choose a compact set K, K ∈ B(R), such that

γ(Kc) < ε, EZ21{Z∈Kc} < ε, γ(∂K) = 0, (34)

where γ is the standard Gaussian measure on R. Using (34) and the convergence of EY 2
n 1{Z∈K}

to EZ21{Z∈K}, we obtain

∣

∣EY 2
n −EZ2

∣

∣ ≤
∣

∣EY 2
n 1{Z∈K} −EZ21{Z∈K}

∣

∣ + EY 2
n 1{Z∈Kc} + EZ21{Z∈Kc} ≤ 3ε

for sufficiently large n. Therefore, EY 2
n → EZ2.

Finally, Corollary 1 gives W2(Fn,Φ)→ 0. This completes the proof of (i).
(ii) The convergence result Wp(Fn,Φ) → 0 and the theorem of Bickel and Freedman

together imply that E|Yn|p → E|Z|p. We will show that for the given function C all the
conditions of Theorem 2 are satisfied. Indeed, we have EC(2|Z|) < +∞, while the finiteness
of

∫

C(2|x|)dFn(x) follows from the convergence of the absolute p-moments combined with

C(2|Yn|)=C(2|Yn|)1{|Yn|≤x0} + C(2|Yn|)1{|Yn |>x0}≤C(x0)1{|Yn|≤x0} + β|Yn|p1{|Yn|>x0}, (35)

with a positive constant β such that C(x) ≤ βxp, for all x > x0. The CLT provides the
weak convergence result Fn =⇒ Φ, while we obtain EC(2|Yn|)→ EC(2|Z|) from the uniform
integrability of (C(2|Yn|) which follows from (35) and the uniform integrability of (|Yn|p).
Thus, applying Theorem 2, we obtain that Tc(µn, γ) → 0. This concludes the proof of
Theorem 3.

Proof of Theorem 4. (i) This closely follows arguments of the proof of Theorem 3 (i).
Once again we apply Sakhanenko’s inequality (32), this time for independent variables ξ1, ...,
ξn with distribution functions Fξi

(x) = FXi
(xσn), i = 1, ..., n. As in getting (33), we have

W p
p (Fn,Φ) ≤ Cp2p

∑n
i=1 E|Xi|p

σp
n

→ 0,
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as n→∞, using the Lyapunov condition (7).
The proofs of part (ii) of Theorem 4 to 7 with obvious changes repeat the proof of Theorem
3 (ii).

Proof of Theorem 5. (i) We will check that all the conditions of Corollary 1 are satisfied.
Doukhan et al. showed that if E|X1|k < +∞ and

∑∞
n=1 n1/(k−1)αn <∞ for k > 2, then the

quantile condition (8) holds. It is easy to verify that the series above converges for k = p + δ
thanks to the rate condition (9); thus, the α-mixing CLT is valid and Fn =⇒ Φ.

Next, we verify that E|Yn|p → E|Z|p, where Yn = Sn/(σ
√

n). The CLT gives Yn
d−→ Z,

while the uniform boundedness of E|Yn|p follows from the moment bound (10):

E|Yn|p ≤ Kσ−p(E|X1|p+δ)
p

p+δ . (36)

Let Z ∼ N(0, 1) and the sequence (Xn) be independent. Fix ε > 0 and choose a compact
set K as in (34) (with 2 replaced by p). From (36) and the convergence of E|Yn|p1{Z∈K} to
E|Z|p1{Z∈K}, we get

|E|Yn|p −E|Z|p| ≤
∣

∣E|Yn|p1{Z∈K} −E|Z|p1{Z∈K}

∣

∣ + E|Yn|p1{Z∈Kc} + E|Z|p1{Z∈Kc}

≤ ε + εKσ−p(E|X1|p+δ)
p

p+δ + ε,

for sufficiently large n. Therefore, E|Yn|p → E|Z|p.
Finally, Corollary 1 gives Wp(Fn,Φ)→ 0.

Proofs of Theorems 6 (i) and 7 (i). These are carried out by using the same arguments
as in the proof of Theorem 5 (i). Instead of the moment bound (10), we use the condition
(12) and the Rosenthal inequality for independent sequence (X ∗

n) to prove Theorem 6 (i) and
Birkel’s result (14) to prove Theorem 7 (i).
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