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Abstract

Tail estimates of statistics are given; they depend on jackknife estimates of
variance of the statistics of interest.

1 Introduction

We wish in these simple notes to provide some further possible answers to the following
general question: Given a statistic S of the independent random sample X1, · · · , Xn,
how to find estimates of the sampling distribution of S? Of course, any potential answer
to that question will have to depend on the properties of the statistic and of the random
sample. Since we strive for generality, we certainly do not wish to presuppose any
distributional assumptions on the sample, and thus work in a non–parametric setting.
The lack of parametric assumption will be overcome by using jackknife type estimates of
variance which will control our estimates of the sampling distribution. Among the many
methods developed to answer our main question, Efron’s bootstrap and its ancestor
the Quenouille–Tuckey jackknife have enjoyed tremendous success (see [E1], [E2], [ET],
[M], [PS], [F]). It is, however, our belief that there is still a need for a theoretical
understanding of our question and a attempt at answering it is provided below. Indeed,
the jackknife and bootstrap methodologies have mainly been used to estimate some
parameters of interest; but not really to estimate the sampling distribution itself which
is our main goal in these notes. Of course, bootstrap or jackknife confidence intervals
also provide sampling distribution estimates, but more precisely to assess the accuracy
of the parameter estimates than to analyze the sampling distribution itself.

A main motivation for the present work is [H], where an expansion of the variance
of a symmetric statistic of iid samples is obtained via the iterated jackknife. This ex-
pansion was also used to give generalizations of the Efron–Stein [ES] inequality which
asserts that the jackknife estimate of variance is biased upwards. In particular, it was
highlighted there than the jackknife could be thought of as a statistical gradient. This
same idea will be repeatedly used here and will help us in answering our introductory
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question. A second main motivation is a functional approach to deviation inequalities
which has been popularized by Ledoux [L1], [L2]. In this approach, one starts with a
functional inequality such as a Poincaré or a log–Sobolev inequality leading to moment
generating function estimates and then to deviation (this is the so called Herbst tech-
nique). From a statistical point of view requiring that the statistics of interest satisfy
functional inequalities is rather unnatural (e.g., they might not be differentiable). It
is however possible to apply such a methodology to obtain estimates on the sampling
distribution of a statistic of interest. The key ingredient in this approach is to replace
the gradient by the jackknife leading to a resampling versions of functional inequalities
between, say, the entropy and its jackknife estimate. With this analogy, the approach in
obtaining our results is somehow the converse of the functional approach. Starting with
a statistic, we find the proper jackknife inequality and this lead to tail inequalities. The
techniques of proofs can thus be seen as jackknife modifications of techniques in [L1],
[L2].

Let us describe a little bit the content of our paper. In the next section, we recall
the notion of entropy, and state a known tensorization property. This allows us to
obtain our first sampling distribution result which gives normal tails estimates. This
first result recovers, the classical Azuma–Hoeffding martingale inequality and it is also
compared to various known estimates. A second result which leads to Poissonian type
tails inequalities is then obtained. It recovers, in particular, a classical inequality of
Bennett on sums of independent random variables. The final section is devoted to a
further understanding of our approach and to the Efron–Stein inequality.

2 Entropy and Sampling Distribution

While jackknife based variance inequalities have antecedents, such is not the case for the
entropy. Recall that given a statistics S ≥ 0, (and with the convention 0 log 0 = 0) the
entropy of S is given by

EntS = ES log S −ES log ES. (2.1)

(by Jensen’s inequality, EntS ≥ 0). We start this section with a known tensorization
lemma (see [L1], [L2]). An equivalent formulation of this result is already present in
[L] (see [HT] for further references). The proof below is only given for the reader’s
convenience and for the sake of completeness.

Lemma 2.1 Let X1, X2, · · · , Xn, be independent random variables with Xi ∼ Fi, and let
the statistic S : Rn −→ R+ have finite entropy. Then,

EntF nS ≤ EF n

n∑
i=1

EntFi
S, (2.2)

where F n = F1 × · · · × Fn.
Proof. The proof of (2.1) is done by induction. For n = 1, the inequality in (2.1)
becomes equality and so the result is clear. Now assume the result for n − 1, and let
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F n−1 = F1 × · · · × Fn−1. Then we have

EntF nS = EF nS log S − EF nS log EF nS

= EFnEntF n−1S + EFn(EF n−1S log EF n−1S)−EF nS log EF nS

≤ EFnEF n−1

n−1∑
i=1

EntFi
S + EFn(EF n−1S log EF n−1S)−EF nS log EF nS

≤ EF n

n−1∑
i=1

EntFi
S + EFn(EF n−1S log EF n−1S)− EF nSEF n−1 log EFnS

≤ EF n

n−1∑
i=1

EntFi
S + EFn(EF n−1S log S)− EF nSEF n−1 log EFnS

= EF n

n−1∑
i=1

EntFi
S + EF nEntFnS

where the first inequality is obtained from the induction hypothesis, while the second
and third follow by Jensen’s inequality applied respectively to logx and x log x, x > 0
and where we have also used Fubini theorem. 2

Remark 2.2. If for each i, X̂i is an independent copy of Xi, then (by Jensen’s inequality
again)

EntFi
S ≤ 1

2
E

Fi×F̂i
(S − Si)(log S − log Si),

where Si = S(X1, · · · , Xi−1, X̂i, Xi+1, · · · , Xn), and X̂i ∼ F̂i. Thus

EntF nS ≤ 1

2
EF n

n∑
i=1

E
Fi×F̂i

(S − Si)(log S − log Si). (2.3)

Moreover since EF nE
Fi×F̂i

(S − Si)(log S − log Si) = EF nE
F̂i

(S − Si)(log S − log Si), we
see that (2.3) becomes

EntF nS ≤ 1

2
EF n

n∑
i=1

E
F̂i

(S − Si)(log S − log Si). (2.4)

The difference between (2.3) and (2.4) is minor, it might however lead to an improve-
ment in the method of bounded difference (or martingale difference method). It is known
(and easy to verify) that if S has finite second moment, limC→+∞Ent(S +C)2 = 2VarS
and thus (2.2) is stronger (see also the next section) than the Efron–Stein inequality (in
essence, the jackknife estimate of entropy is also biased upwards).

Combining the tensorization Lemma 2.1 with techniques develop in [L1], [L2] will be
enough to prove our first deviation inequality. To the best of our knowledge, (2.5) below
is new, it is however possible that it follows from some “martingale inequality”. Recall
that S+ = max(S, 0).

Theorem 2.3. Let S : Rn −→ R be a statistic of the independent random variables
X1, · · · , Xn with Xi ∼ Fi; and for each i, let X̂i be an independent copy of Xi, with
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X̂i ∼ F̂i. Then for any t > 0,

P(S −EF nS ≥ t) ≤ exp

 −t2

4
∥∥∥∑n

i=1 E
F̂i

((S − Si)+)2
∥∥∥∞
 , (2.5)

where Si = S(X1, · · · , Xi−1, X̂i, Xi+1, · · · , Xn), and where
∥∥∥∑n

i=1 E
F̂i

((S − Si)
+)

2
∥∥∥∞ =

supF n

(∑n
i=1 E

F̂i
((S − Si)

+)
2
)
.

Proof. The strategy of proof is very classical. First, let us assume that in addition to
the hypotheses, S is bounded and so EF nS2eλS < +∞, for all λ > 0. Then by Bernstein
(Markov, Chebyshev, Bienaymé) inequality,

P(S −EF nS ≥ t) ≤ e−λt−λEF nSEF neλS , (2.6)

and so we need to estimate EF neλS . To do so, and for each i, let X̂i be an independent
copy of Xi with X̂i ∼ F̂i. From (2.2) and (2.3), the simple inequality (a− b)(ea − eb) ≤
(a− b)2(ea + eb)/2, a, b ∈ IR, and (2.4), we get

EntF neλS ≤ EF n

n∑
i=1

EntFi
eλS

≤ 1

2
EF n

n∑
i=1

E
Fi×F̂i

(λS − λSi)(e
λS − eλSi)

≤ 1

2
λ2EF n

n∑
i=1

E
Fi×F̂i

(S − Si)
2 (eλS + eλSi)

2

≤ λ2EF n

n∑
i=1

E
Fi×F̂i

eλS
(
(S − Si)

+
)2

= λ2EF neλS
n∑

i=1

E
F̂i

(
(S − Si)

+
)2

≤
∥∥∥∥∥

n∑
i=1

E
F̂i

(
(S − Si)

+
)2
∥∥∥∥∥
∞

λ2EF neλS (2.7)

Setting H(λ) = λ−1 log EF neλS, λ 6= 0, H(0) = EF nS, (2.7) reads as

H ′(λ) ≤
∥∥∥∥∥

n∑
i=1

E
F̂i

(
(S − Si)

+
)2
∥∥∥∥∥
∞

.

Integrating this inequality gives

EF neλS ≤ exp

(
λEF nS + λ2

∥∥∥∥∥
n∑

i=1

E
F̂i

(
(S − Si)

+
)2
∥∥∥∥∥
∞

)
;

when combined with (2.6) and a minimization in λ

λ =
t

2
∥∥∥∑n

i=1 E
F̂i

((S − Si)+)2
∥∥∥∞


it leads to:

P(S −EF nS ≥ t) ≤ exp

 −t2

4
∥∥∥∑n

i=1 E
F̂i

((S − Si)+)2
∥∥∥∞
 ,
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for every every t ≥ 0. To remove the extra hypothesis, truncate at M > 0, i.e., apply
the tail result to S ∧M , use the inequality ((S ∧M − Si ∧M)+)

2 ≤ ((S − Si)
+)

2
, and

let M tend to infinity. 2

Remark 2.4. (i) The presence of the positive part in (2.5) should not be surprising
since only right tails estimates are provided. Essentially proceeding as above, it also
follows that

P(S −EF nS ≥ t) ≤ exp

 −t2

2
∥∥∥∑n

i=1 E
F̂i

(S − Si)2
∥∥∥∞
 . (2.8)

However, this is a much weaker bound that the one provided by (2.5). Indeed, let

S(x) = (
∑n

i=1 |xi|2)1/2
(or let S any convex function) then,

(
(S − Si)

+
)2 ≤ |Xi − X̂i|2

(
∂S

∂xi
(X1, · · · , Xn)

)2

;

and if the Xi are bounded random variables, this last inequality provides for (2.5) a

bound of the right order exp

( −t2

C‖∇S‖2∞

)
. On the other hand and say for X1 = · · · = Xn,

non degenerate iid random variables with P(X1 = 0) > 0,∥∥∥∥∥
n∑

i=1

E
F̂i

(S − Si)
2

∥∥∥∥∥
∞
≥ sup

X1=X2=···=Xn=0

∣∣∣∣∣
n∑

i=1

E
F̂i

(S − Si)
2

∣∣∣∣∣ = nE
F̂1

X̂2
1 > 0,

which in (2.8) gives a weaker bound than (2.5). Also, in (2.5), there is no reason for the
constant 1/4 to be optimal.

(ii) Applying (2.5) to −S, gives for any t > 0,

P(S − EF nS ≤ −t) ≤ exp

 −t2

4
∥∥∥∑n

i=1 E
F̂i

((S − Si)−)2
∥∥∥∞
 . (2.9)

Hence, two sided tails inequalities follow by adding (2.5) and (2.9) and in particular
these also imply a two sided version of (2.8).

(iii) (2.5), (2.8) and (2.9) recover and complement various known results (up to universal
constants). For example, if S = X1 + · · · + Xn, with ai ≤ Xi ≤ bi, then (S − Si)

2 =
(Xi − X̂i)

2 and (2.8) implies the classical result of Hoeffding,

P(S −ES ≥ t) ≤ exp

( −t2

2
∑n

i=1(bi − ai)2

)
. (2.10)

Moreover, if (S−Si)
2 ≤ c2

i , then the bounded difference inequality (see [GH]), also follows
from (2.5). We should however mention here that since our supremum is outside the sum,
we only need to have a global control on the sum but not on each individual supremum.
Of course, this is irrelevant if S = X1+· · ·+Xn, or if S is invariant under any permutation
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of its arguments and if the Xi are iid. In this latter case, 2
∥∥∥∑n

i=1 E
F̂i

(S − Si)
2
∥∥∥∞ =∥∥∥∥∑n

i=1 E
F̂i

(
Si − S

)2
∥∥∥∥∞, which is more akin to the usual jackknife expression. Actually

similar arguments allow to replace (2.5) by

P(S − EF nS ≥ t) ≤ exp

( −t2

4 ‖∑n
i=1 VarFi

S‖∞

)
.

Indeed,

EntFi
eλS ≤ λEFi

(S −EFi
S)(eλS − eλEFi

S)

≤ λ2
(
EFi

(
(S − EFi

S)+
)2

eλS + EFi

(
(S −EFi

S)−
)2

eλEFi
S
)

,

hence

EntF neλS ≤ λ2EF neλS
n∑

i=1

EFi
(S −EFi

S)2,

and the claim follows as before. Another version of Theorem 2.3 could also have been

given with 4
∥∥∥∥∑n

i=1

(
(S − Si)

+
)2
∥∥∥∥∞ replacing the present denominator on the right hand

side of (2.5).

(iv) It is not clear to us, how (2.5) compares to the various “martingale difference
inequalities (Azuma–Hoeffding)” or their generalizations (see [GH] and the reference
therein). As is well known, S −EF nS =

∑n
i=1 di, with di = E(S|Fi)−E(S|Fi−1), where

Fi = σ(X1, · · · , Xi) is the sigma–field generated by X1, · · · , Xi, F0 = {Ω, ∅}. Then since
the di form a martingale difference sequence,

P(|S − ES| ≥ t) ≤ 2 exp

( −t2

2
∑n

i=1 ‖di‖2∞

)
. (2.11)

Now, we also have di = E(S − Si|Fi), and so (2.5) not only takes the positive part
which can be significant but also puts the sup outside the sum rather than inside but
not of E(S − Si|Fi) but of (S − Si). If F∗

i = σ(X1, · · · , Xi−1, Xi+1, · · · , Xn), then the
denominator of (2.8) is 2‖∑n

i=1(S−E(S|F ∗
i ))2 +Var(S|F∗

i )‖∞ = 2‖∑n
i=1(S−EFi

S)2 +
EFi

(S−EFi
S)2‖∞ (so involving conditional variance and empirical conditional variance).

(v) In (2.5), and up to a worsening of the constants, the mean can be replaced by a
median or other parameters of interest, e.g., the sample mean or its bootstrap version
(see, e.g., [MS] for such replacement techniques). Actually, bootstrap versions of our
results also hold, e.g., (and using the notations of [E2])

P∗(S − E∗
F nS ≥ t) ≤ exp

 −t2

4
∥∥∥∑n

i=1 E∗
F̂i

((S − Si)+)2
∥∥∥∞
 . (2.12)

(vi) Actually, the present techniques show that
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P(S − EF nS ≥ t) ≤ exp

 −t2

4
∥∥∥∥EF̂

(
(S − Ŝ)+

)2
∥∥∥∥∞

 , (2.13)

where Ŝ is an independent copy of S. This might be of interest when dealing with non
independent X’s. Finally we should also mention that, throughout, we only deal with
real valued random variables but that random variables with values in an abstract space
and statistics S defined on this space could have been considered.

(vii) In this note we strived for generality, it is however likely that for specific types of
statistics the above results can be improved or be made more concrete. It will also be
of great interest to estimates, for various classes of statistics, the quantities involved in
the tail estimates.

3 Concluding Remarks

In the previous section, we obtained exponential inequalities for statistics S of the in-
dependent sample X1, · · · , Xn using the tensorization of the entropy. In fact, many
functionals tensorize ([L1]), and among those the variance. Since a main motivation for
the present notes was the Efron–Stein inequality, let us recall:

Lemma 3.1 Let X1, X2, · · · , Xn be independent random variables with Xi ∼ Fi, and let
the statistic S : Rn −→ R have finite second moment. Then,

VarF nS ≤ EF n

n∑
i=1

VarFi
S, (3.1)

where F n = F1 × · · · × Fn.
Proof. The proof of (3.1) is done by induction. For n = 1, the inequality in (3.1)
becomes equality and so the result is clear. Now assume the result for n − 1, and let
F n−1 = F1 × · · · × Fn−1. Then we have

VarF nS = EF nS2 − (EF nS)2

= EFnVarF n−1S + EFn(EF n−1S)2 − (EF nS)2

≤ EFnEF n−1

n−1∑
i=1

VarFi
S + EFn(EF n−1S − EF n−1EFnS)2

= EF n

n−1∑
i=1

VarFi
S + EFn(EF n−1(S − EFnS))2

≤ EF n

n−1∑
i=1

VarFi
S + EFn(EF n−1(S − EFnS)2)

= EF n

n−1∑
i=1

VarFi
S + EF nVarFnS
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where the first inequality is obtained from the induction hypothesis and the second by
Cauchy–Schwarz, and where we have also used Fubini theorem. 2

Remark 3.2. (i) If for each i, X̂i is an independent copy of Xi, then (3.1) becomes

VarF nS ≤ 1

2
EF n

n∑
i=1

E
Fi×F̂i

(S − Si)
2, (3.2)

where Si = S(X1, · · · , Xi−1, X̂i, Xi+1, · · · , Xn). Again, since EF nE
Fi×F̂i

(S − Si)
2 =

EF nE
F̂i

(S − Si)
2, (3.1) can also be written as

VarF nS ≤ 1

2
EF n

n∑
i=1

E
F̂i

(S − Si)
2. (3.3)

(ii) If S is symmetric, i.e., invariant under any permutation of its arguments, and if
X1, · · · , Xn, X̂n+1 are iid, (3.1)–(3.3) recover the Efron-Stein inequality (see [ES]). Still
for iid samples but without any symmetry assumption, (3.1) also recovers an inequality
of Steele ([S]). Moreover, (3.1)–(3.3) is more in line with the jackknife methodology
which requires resampling a single copy of a potential outlier. In contrast to the pub-
lished proofs of these inequalities, the proof of (3.1) does not require an orthogonal
decomposition method (see [RT], [V1], [V2] and [H] for further details and more refer-
ences). Finally, it is clear that equality holds in (3.1)–(3.3) if and only if the the statistic
S is linear, i.e., S − EF nS =

∑n
i=1 fi(Xi).

Acknowledgments: Many thanks to R. Lata la for his comments on an early version
of this paper.

References

[E1] Efron, B. (1979), Bootstrap Methods: Another look at the Jackknife. Ann. Statist. 7,
1–26.

[E2] Efron, B. (1982), The Jackknife, the Bootstrap and Other Resampling Plans SIAM,
Philadelphia.

[ET] Efron, B. and Tibsirani, R. (1993), An introduction to the Bootstrap. Chapman and
Hall, New York.

[ES] Efron, B. and Stein, C. (1981), The jackknife estimate of variance. Ann. Statist. 9 586–
596.

[F] Frangos, C.C. (1987), An updated bibliography on the jackknife method. Comm. Statist.
Theory Metods 16, 1543–1584.

[GH] Godbole, A.P. and Hitczenko, P. (1998), Beyond the method of bounded differences.
Proceedings of the DIMACS Workshop ”Microsurveys in Discrete Probability” DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 41, 43–58.
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