Quiz 2 for Math 2605A1-2, Fall 2004

Name:

This quiz is to be taken without notes of any sorts. The allowed time is 20 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write 1.414....

Consider the function

$$
f(x, y)=3-x^{2}-\frac{y^{2}}{4}
$$

Think of the graph of f as a a mountain, so that $z=f(x, y)$ is your altitude at the point (x, y).

I: (4 points) Find an equation for the tangent plane to the graph of $z=f(x, y)$ at at the point $\mathbf{x}_{0}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

The gradient is

$$
\nabla f=\left[\begin{array}{c}
-2 x \\
-y / 2
\end{array}\right]
$$

The normal vector at the point $(1,2)$ is given by

$$
\mathbf{N}=\left[\begin{array}{l}
-2 \\
-1 \\
-1
\end{array}\right]
$$

and since $f(1,2)=1$, the plane by the equation

$$
-2(x-1)-(y-2)-(z-1)=0
$$

II: (3 points) Find the tangent line to the level curve of f that passes through the point $\mathbf{x}_{0}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Give the line in parametric form.

The point $(1,2)$ is on the level curve. The gradient at this point is given by

$$
\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
$$

and hence the vector

$$
\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

is a direction vector. Thus, the line is given by

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-2
\end{array}\right] .
$$

III: (3 points) You stand at the point \mathbf{x}_{0}, and walk due East with a speed of 2 meters per second, so that your velocity vector is $\left[\begin{array}{l}2 \\ 0\end{array}\right]$. What is the rate of change of your altitude?

The rate of change is given by

$$
\left.\frac{d}{d t} f\left(\mathbf{x}_{\mathbf{0}}+t \mathbf{v}\right)\right|_{t=0}=\mathbf{v} \cdot \nabla f\left(\mathbf{x}_{\mathbf{0}}\right)
$$

where $\mathbf{x}_{\mathbf{0}}=(1,2)$ and $\mathbf{v}=(2,0)$. Hence the rate of change is -4 .
Extra credit: The tangent that you computed in problem I intersects the plane $z=1$ in a line. Give the line in parametric form.

We have to intersect the plane

$$
2(x-1)+(y-2)+(z-1)=0
$$

with the plane $z=1$. The resulting line is given by the equation

$$
2(x-1)+(y-2)=0
$$

and hence in parametric form by

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

