Name:

This quiz is to be taken without calculators and notes of any sorts. The allowed time is 20 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$...

I: Consider the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 6 & 1 \\
3 & 1 & 2
\end{array}\right]
$$

a) (3 points) Using the largest off-diagonal elements for the first step in the Jacobi Algorithm write down the Givens rotation G and calculate the matrix $A^{(1)}=G^{T} A G$.
b) (1 point) Find an exact eigenvalue of the matrix A.

II: (3 points) Recall that $\operatorname{Off}(A)$ denotes the sum of the squares of the off-diagonal elements of A and $A^{(k)}$ is the matrix after the k-th step in the Jacobi algorithm. Which of the statments are true and which are false:
a) $\operatorname{Off}\left(A^{(12)}\right) \geq \operatorname{Off}\left(A^{(13)}\right)$
b) $\operatorname{Off}\left(A^{(k)}\right) \geq \frac{1}{1+k^{2}}$
c) $\operatorname{Off}\left(A^{(13)}\right) \leq \frac{2}{3} \mathrm{Off}\left(A^{(12)}\right)$

III: (3 points) Consider the matrix

$$
\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 5
\end{array}\right]+t\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right]
$$

Find all the eigenvalues for small values of t, i.e., in the forms $\mu_{i}(0)+\mu_{i}^{\prime}(0) t+o(t), i=1,2,3$ with explicit values for $\mu_{i}(0)$ and $\mu_{i}^{\prime}(0)$.

