Quiz 3 for Calculus ++, Math 2605A1-2, October 12, 2004

Name:

This quiz is to be taken without calculators and notes of any sorts. The allowed time is 20 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write 1.414....

I: Consider the matrix

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 6 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$

a) (3 points) Using the largest off-diagonal elements for the first step in the Jacobi Algorithm write down the Givens rotation G and calculate the matrix $A^{(1)} = G^T A G$.

b) (1 point) Find an exact eigenvalue of the matrix A.

II: (3 points) Recall that Off(A) denotes the sum of the squares of the off-diagonal elements of A and $A^{(k)}$ is the matrix after the k-th step in the Jacobi algorithm. Which of the statements are true and which are false: a) $Off(A^{(12)}) > Off(A^{(13)})$

a)
$$\operatorname{Off}(A^{(12)}) \ge \operatorname{Off}(A^{(13)})$$

b)
$$Off(A^{(k)}) \ge \frac{1}{1+k^2}$$

c) $Off(A^{(13)}) \le \frac{2}{3}Off(A^{(12)})$

III: (3 points) Consider the matrix

3	1	0		[1	2	3	
1	3	0	+t	2	3	4	
0	0	5		3	4	5	

Find all the eigenvalues for small values of t, i.e., in the forms $\mu_i(0) + \mu'_i(0)t + o(t)$, i = 1, 2, 3with explicit values for $\mu_i(0)$ and $\mu'_i(0)$.