Quiz 3 for Calculus ++ , Math 2605A1-2, October 12, 2004

Name:

This quiz is to be taken without calculators and notes of any sorts. The allowed time is 20 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write 1.414

I: Consider the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 6 & 1 \\
3 & 1 & 2
\end{array}\right]
$$

a) (3 points) Using the largest off-diagonal elements for the first step in the Jacobi Algorithm write down the Givens rotation G and calculate the matrix $A^{(1)}=G^{T} A G$.

The 2×2 submatrix is

$$
\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right] .
$$

The eigenvalues are 5, -1 and the corresponding eigenvectors are

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Thus, the Givens rotation is

$$
G=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Finally

$$
G^{T} A G=\left[\begin{array}{ccc}
5 & \sqrt{2} & 0 \\
\sqrt{2} & 6 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

b) (1 point) Find an exact eigenvalue of the matrix A.
-1 is obviously and exact eigenvalues of A because it is an eigenvalue of $G^{T} A G$.
II: (3 points) Recall that $\operatorname{Off}(A)$ denotes the sum of the squares of the off-diagonal elements of A and $A^{(k)}$ is the matrix after the k-th step in the Jacobi algorithm. Which of the statments are true and which are false:
a) $\operatorname{Off}\left(A^{(12)}\right) \geq \operatorname{Off}\left(A^{(13)}\right)$ FALSE it has to decrease.
b) $\operatorname{Off}\left(A^{(k)}\right) \geq \frac{1}{1+k^{2}}$ FALSE it tends to zero exponentially fast.
c) $\operatorname{Off}\left(A^{(13)}\right) \leq \frac{2}{3} \operatorname{Off}\left(A^{(12)}\right)$ TRUE.

III: (3 points) Consider the matrix

$$
\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 5
\end{array}\right]+t\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right]
$$

Find all the eigenvalues for small values of t, i.e., in the forms $\mu_{i}(0)+\mu_{i}^{\prime}(0) t+o(t), i=1,2,3$ with explicit values for $\mu_{i}(0)$ and $\mu_{i}^{\prime}(0)$.

The eigenvalues and normalized eigenvectors of the first matrix are

$$
4, \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], 2, \frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], 5,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Recall that the formula for the eigenvalues of $A+t B$ for small values of t is

$$
\mu(t)=\mu(0)+v \cdot B v t+O\left(t^{2}\right)
$$

we get

$$
4+4 t+O\left(t^{2}\right), 2+O\left(t^{2}\right), 5+5 t+O\left(t^{2}\right)
$$

