Quiz 3 for Calculus ++ , Math 2605A1-2, February 19, 2004

Name:

This quiz is to be taken without calculators and notes of any sorts. The allowed time is 25 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$...

I: (5 points) Maximize the function $f(x, y)=x^{2}+4 x y+y^{2}$ subject to the constraint $x^{2}+y^{2}=1$.

Using Lagrange multiplier we get

$$
\left[\begin{array}{l}
2 x+4 y \\
2 y+4 x
\end{array}\right]=\lambda\left[\begin{array}{l}
2 x \\
2 y
\end{array}\right]
$$

which amounts to solving the equations

$$
(x+2 y) y=(y+2 x) x, x^{2}+y^{2}-1=0,
$$

or what is the same

$$
x^{2}=y^{2}, x^{2}+y^{2}=1
$$

The solutions are $x^{2}=y^{2}=1 / 2$ or

$$
\frac{1}{\sqrt{2}}(\pm 1, \pm 1)
$$

where the $\pm \mathrm{s}$ are independent, there are four pairs of solutions.

$$
f\left(\frac{1}{\sqrt{2}}(1,1)\right)=f\left(\frac{1}{\sqrt{2}}(-1,-1)\right)=3
$$

and

$$
f\left(\frac{1}{\sqrt{2}}(-1,1)\right)=f\left(\frac{1}{\sqrt{2}}(1,-1)\right)=-1 .
$$

Thus the maximum is attained at

$$
\frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(-1,-1)
$$

and the value of the function there is 3 .
II: (5 points) Using the point $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ as an initial value, apply one step of Newtons method to calculate an approximate value for the solution of the system

$$
x y-1=0, x^{2}-y^{2}-2=0
$$

$$
\begin{gathered}
x_{1}=x_{0}-J_{F}\left(x_{0}\right)^{-1} F\left(x_{0}\right) \\
J_{F}(x)=\left[\begin{array}{cc}
y & x \\
2 x & -2 y
\end{array}\right] \\
J_{F}\left(x_{0}\right)=\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right] \\
J_{F}\left(x_{0}\right)^{-1}=\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right] \\
F\left(x_{0}\right)=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]
\end{gathered}
$$

and hence

$$
x_{1}=\left[\begin{array}{l}
\frac{3}{2} \\
1
\end{array}\right]
$$

III: (Additional 3 points credit) Calculate the Givens rotation in the first step of the Jacobi algorithm for the matrix

$$
\left[\begin{array}{ccc}
4 & 1 & 4 \\
1 & 3 & 2 \\
4 & 2 & -2
\end{array}\right]
$$

You only have to calculate the Givens rotation.
The submatrix with the largest off-diagonal elements is

$$
\left[\begin{array}{cc}
4 & 4 \\
4 & -2
\end{array}\right]
$$

The eigenvalues and eigenvectors are

$$
6, \frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad-4, \frac{1}{\sqrt{5}}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

and hence the Givens rotation is

$$
\frac{1}{\sqrt{5}}\left[\begin{array}{ccc}
2 & 0 & -1 \\
0 & \sqrt{5} & 0 \\
1 & 0 & 2
\end{array}\right]
$$

