Practice-quiz 4 for Math 2605J1-J2, Fall 2007

Name:

This quiz is to be taken without notes of any sorts. The allowed time is 20 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write 1.414....
I: (3 points) Find the length of the curve

$$
\mathbf{x}(t)=\left[\begin{array}{c}
t \\
t^{2} \\
\frac{2 t^{3}}{3}
\end{array}\right], 0 \leq t \leq 2
$$

The speed is

$$
|d \mathbf{x}(t) / d t|=\left[1+4 t^{2}+4 t^{4}\right]^{1 / 2}=\left(1+2 t^{2}\right)
$$

Hence the length is

$$
\int_{0}^{2}|d \mathbf{x}(t) / d t| d t=\int_{0}^{2}\left(1+2 t^{2}\right) d t=2+\frac{2}{3} 2^{3}=\frac{22}{3}
$$

II: (3 points) Find the solution of the differential equation

$$
x^{\prime}=x^{2}, x(0)=1
$$

This equation can be written as

$$
\frac{x^{\prime}}{x^{2}}=1
$$

or

$$
-\frac{d}{d t} \frac{1}{x(t)}=1
$$

which means that

$$
-\frac{1}{x(t)}=t+C
$$

where C is some constant. Hence

$$
x(t)=-\frac{1}{t+C}
$$

Since $x(0)=1$ we get that $C=-1$ and therefore

$$
x(t)=\frac{1}{1-t}
$$

Note that the solution ceases to exist at $t=1$.

III: (4 points) Using Householder reflections, find the $Q R$ factorization of the matrix

$$
\left[\begin{array}{ll}
2 & 2 \\
1 & 0 \\
2 & 1
\end{array}\right] .
$$

The vector \mathbf{u} in the Householder reflection is

$$
\mathbf{u}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right]
$$

and therefore

$$
M_{1}=I-2 \mathbf{u} \mathbf{u}^{T}=\frac{1}{3}\left[\begin{array}{rrr}
2 & 1 & 2 \\
1 & 2 & -2 \\
2 & -2 & -1
\end{array}\right]
$$

Next

$$
M_{1} A=\left[\begin{array}{ll}
3 & 2 \\
0 & 0 \\
0 & 1
\end{array}\right]
$$

The Housoholder reflection that maps the vector $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ to $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is the matrix

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

and hence

$$
M_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

and

$$
R=M_{2} M_{1} A=\left[\begin{array}{ll}
3 & 2 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

and

$$
Q=\frac{1}{3}\left[\begin{array}{ccc}
2 & 2 & 1 \\
1 & -2 & 2 \\
2 & -1 & -2
\end{array}\right]
$$

IV: (3 points) Draw in a qualitative way the vector field given by

$$
\mathbf{F}(\mathbf{x})=\left[\begin{array}{c}
x \\
-y
\end{array}\right]
$$

