Quiz 4 for Calculus ++ , Math 2605A1-2, April 1, 2004

Name:

This quiz is to be taken without calculators and notes of any sorts. The allowed time is 25 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$
I: Consider the matrix $A=\left[\begin{array}{cc}6 & 8 \\ -8 & 6\end{array}\right]$.
a) (2 points) Find the Householder reflection that maps the vector $\left[\begin{array}{c}6 \\ -8\end{array}\right]$ to a multiple of e_{1}.

$$
\begin{gathered}
\mathbf{u}=\frac{1}{4 \sqrt{5}}\left[\begin{array}{l}
4 \\
8
\end{array}\right] \\
Q=\frac{1}{5}\left[\begin{array}{cc}
3 & -4 \\
-4 & -3
\end{array}\right]
\end{gathered}
$$

b) (2 points) Find the QR decomposition of the matrix A.

$$
R=Q A=\left[\begin{array}{rr}
10 & 0 \\
0 & -10
\end{array}\right]
$$

II: (3 points) Compute $e^{t A}$ where

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & 4 \\
0 & 2
\end{array}\right] . \\
e^{A t}=\left[\begin{array}{cc}
e^{3 t} & a(t) \\
0 & e^{2 t}
\end{array}\right] \\
e^{A t} A=\left[\begin{array}{cc}
3 e^{3 t} & 4 e^{3 t}+3 a(t) \\
0 & 2 e^{2 t}
\end{array}\right]
\end{gathered}
$$

and

$$
A e^{A t}=\left[\begin{array}{cc}
3 e^{3 t} & 4 e^{2 t}+2 a(t) \\
0 & 2 e^{2 t}
\end{array}\right]
$$

These two matrices must be the same and hence

$$
a(t)=4\left(e^{2 t}-e^{3 t}\right) .
$$

Thus

$$
e^{A t}=\left[\begin{array}{cc}
e^{3 t} & 4\left(e^{2 t}-e^{3 t}\right) \\
0 & e^{2 t}
\end{array}\right]
$$

III: (3 points) The Householder reflection that maps the vector $\left[\begin{array}{c}1+i \\ 4\end{array}\right]$ to a multiple of $\mathbf{e}_{\mathbf{1}}$ is of the form $\mathbf{I}-2 \mathbf{u u}^{*}$. Find \mathbf{u}. Call

$$
\begin{gathered}
\mathbf{w}=\left[\begin{array}{c}
1+i \\
4
\end{array}\right] \\
\langle\mathbf{w}, \mathbf{w}\rangle=18
\end{gathered}
$$

So we pick

$$
\mathbf{z}=\left[\begin{array}{c}
\sqrt{18} c \\
0
\end{array}\right]
$$

where c is a complex number of magnitude 1 chosen in such a way that

$$
\langle\mathbf{z}, \mathbf{w}\rangle=\sqrt{18} \bar{c}(1+i)
$$

is real. Hence we choose

$$
c=\frac{1+i}{\sqrt{2}}
$$

and we get

$$
\mathbf{z}=\left[\begin{array}{c}
3(1+i) \\
0
\end{array}\right]
$$

Hence

$$
\mathbf{u}=\frac{1}{2 \sqrt{6}}\left[\begin{array}{c}
2(1+i) \\
-4
\end{array}\right]
$$

Extra credit: (3 points) Find the Schur factorization of the matrix in Problem I. The vector

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
i
\end{array}\right]
$$

is an eigenvector with eigenvalue $6+8 i$. Hence

$$
U=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
i & -i
\end{array}\right]
$$

and

$$
U^{*} A U=\left[\begin{array}{lr}
6+8 i & 0 \\
0 & 6-8 i
\end{array}\right]
$$

