TEST 1, MATH 3406 A, SEPTEMBER 26, 2019

This test is to be taken without calculators and notes of any sort. The allowed time is 75 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write 1.414.... State your work clearly, otherwise credit cannot be given.

Print Name:

Section Number:

Likewise, write legibly!

I abide by the G	eorgia T	ech hone	or code.	Signature:	

Problem 1:

a) (7 points) Row reduce the matrix below to reduced echelon form.

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 3 & 1 & -1 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -5 & -10 & -15 \\ 0 & -5 & -10 & -15 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- b) (3 points) Circle the pivots in the final matrix.
- c) (3 points) Write down the pivot columns of the original matrix.

$$\left[\begin{array}{c}1\\4\\3\end{array}\right]\left[\begin{array}{c}2\\3\\1\end{array}\right]$$

d) (2 points) Indicate the free variables. Third and fourth column.

Problem 2:

a) (5 points) Using one step in the row reduction algorithm, find the LU factorization of the matrix

$$A = \begin{bmatrix} 1 & 4 & 6 \\ 2 & 6 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 6 \\ 2 & 6 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 6 \\ 0 & -2 & -4 \end{bmatrix}$$

and

$$\left[\begin{array}{cc} 1 & 4 & 6 \\ 2 & 6 & 8 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 4 & 6 \\ 0 & -2 & -4 \end{array}\right]$$

b) (10 points) A matrix A has an LU factorization

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1 \end{array} \right] \left[\begin{array}{rrr} 2 & 1 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{array} \right]$$

Solve the system $A\vec{x} = \vec{b}$ where

$$\vec{b} = \left[\begin{array}{c} 1 \\ 0 \\ -2 \end{array} \right]$$

$$L\vec{y} = \vec{b}$$

$$\vec{y} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$U\vec{x} = \vec{y}$$

$$\vec{x} = \begin{bmatrix} 3/2 \\ 0 \\ 1 \end{bmatrix}$$

Problem 3: Consider the matrix

$$A = \left[\begin{array}{ccc} 1 & 1 & -2 \\ 2 & 0 & 2 \\ 8 & 2 & 2 \end{array} \right] .$$

$$\left[\begin{array}{ccc}
1 & 1 & -2 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right]$$

a) (4 points) Find a basis for C(A).

$$\left[\begin{array}{c}1\\2\\8\end{array}\right]\left[\begin{array}{c}1\\0\\2\end{array}\right]$$

b) (3 points) Find a basis for N(A)

$$\left[\begin{array}{c} -1\\3\\1\end{array}\right]$$

c) (3 points) Find a basis for $C(A^T)$

$$\left[\begin{array}{c}1\\1\\-2\end{array}\right], \left[\begin{array}{c}0\\1\\-3\end{array}\right]$$

d) (5 points) Find a basis for $N(A^T)$

$$\begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$$

Problem 4: a) (10 points) Use the normal equations to find the vector $\vec{x} \in \mathbb{R}^2$ such that $A\vec{x}$ is closest to \vec{b} , where

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ -1 & 2 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}.$$
$$\vec{x}^* = \begin{bmatrix} 5/3 \\ -1/6 \end{bmatrix}$$

b) (5 points) Find the projection of \vec{b} onto the column space of A.

$$\vec{b}^* = \frac{1}{2} \begin{bmatrix} 3\\3\\-4 \end{bmatrix}$$

Problem 5: a) (10 points) Find the matrix for the orthogonal projection onto the space S spanned by the two orthonormal vectors

$$\vec{v}_1 = \frac{1}{3} \begin{bmatrix} 2\\2\\1 \end{bmatrix} \text{ and } \vec{v}_2 = \frac{1}{3} \begin{bmatrix} -1\\2\\-2 \end{bmatrix}$$
$$QQ^T = \frac{1}{9} \begin{bmatrix} 5 & 2 & 4\\2 & 8 & -2\\4 & -2 & 5 \end{bmatrix}$$

b) (5 points) Find the matrix for the orthogonal projection onto S^{\perp} .

$$I - QQ^T = \frac{1}{9} \begin{bmatrix} 4 & -2 & -4 \\ -2 & 1 & 2 \\ -4 & 2 & 4 \end{bmatrix}$$

c) (5 points) Find the least square approximations for $A\vec{x} = \vec{b}$, i.e., find all vectors $\vec{x} \in \mathbb{R}^3$ so that $A\vec{x}$ is closest to \vec{b} where $\vec{b} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ and A is given by its QR factorization, i.e.,

$$A = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ 2 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 3 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} .$$
$$Q^T \vec{b} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$R\vec{x} = Q^T\vec{b}$$

$$\vec{x} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 2/3 \\ -1 \\ 1 \end{bmatrix}$$

Problem 6: (10 points) Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$\vec{u}_{1} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, \ \vec{u}_{2} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}, \ \vec{u}_{3} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$

$$\vec{v}_{1} = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_{2} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$$

$$\vec{q}_{3} = \vec{u}_{3} - \vec{v}_{1} \cdot \vec{u}_{3} \vec{v}_{1} - \vec{v}_{2} \cdot \vec{u}_{3} \vec{v}_{2} = \vec{u}_{3} - \vec{v}_{1} - \vec{v}_{2}$$

$$\vec{v}_{3} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Problem 7: True or False: (3 points each, no partial credit)

- a) If the row vectors of A are linearly independent then the matrix AA^T is invertible. TRUE The reason is that A^T is a matrix whose column vectors are linearly independent and hence $(A^T)^TA^T = AA^T$ is invertible.
- b) If A = QR, Q orthogonal and R upper triangular then the column vectors of Q form an orthonormal basis for C(A). TRUE
- c) A matrix that has full column rank, i.e., every column has a pivot, always has a right inverse. FALSE

Again, take the matrix

$$A = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

A right inverse B must be of the form

$$B = \left[\begin{array}{cc} a & b \end{array} \right]$$

hence

$$AB = \left[\begin{array}{cc} a & b \\ 0 & 0 \end{array} \right] ,$$

which cannot be the two by two identity no matter what a, b.

- d) The rank of a matrix A^T is the same as the rank of the matrix A. TRUE
- e) For any two matrices A, B, if neither A nor B is invertible, then AB is not invertible either. FALSE

Take

Take
$$B=\left[\begin{array}{c}1\\0\end{array}\right]\ ,A=\left[\begin{array}{c}1&0\end{array}\right]$$
 so that $AB=1$ which is certainly invertible.