mined by

0 + 0 = 0 0 + 1 = 1 + 0 = 0 0 + 2 = 2 + 0 = 0 0 + 3 = 3 + 0 = 0 1 + 1 = 1 1 + 2 = 2 + 1 = 2 1 + 3 = 3 + 1 = 3 2 + 2 = 0 2 + 3 = 3 + 2 = 23 + 3 = 1.

- (i) Show the operation is associative and there is an identity element, so A is a monoid under this operation.
- (ii) Show that \mathbb{Z}_4 is not a group under this operation.
- (iii) Find all subsets of \mathbb{Z}_4 which are groups under this opearation.
- (iv) How does what you found in part (iii) harmonize with Exercise 16.5?
- (v) If we define a subgroup H of a group G to be a subset of G which is itself a group (under the same operation), determine which of the (distinct) groups you found in part (iii) are subgroups one of another.

Note: The Wikipedia page on "Green's relations" has a nice discussion and example related to this exercise.

16.2 Matrix groups

The $n \times n$ matrices with real entries, mentioned above and denoted by $\mathbb{R}^{n \times n}$, do not constitute a group under matrix multiplication, though they do constitute a group under addition. In fact, one proper algebraic classification for $\mathbb{R}^{n \times n}$ is that $\mathbb{R}^{n \times n}$ is a **ring**.

Definition 21. (ring) A set R is called a **ring** if there are operations of addition and multiplication for which the set R and the operations together satisfy the following conditions:

(i) For every $a, b, c \in R$, there holds

$$(a+b) + c = a + (b+c).$$
(16.3)

(ii) There is a zero element $0 \in R$ for which

$$a + 0 = 0 + a = a \tag{16.4}$$

for every $a \in R$.

(iii) For each $a \in R$, there is an additive inverse $-a \in R$ for which

$$a + (-a) = (-a) + a = 0.$$

The conditions (i)-(iii) say that R is a group under addition.

(iv) For each $a, b \in R$ there holds

$$a+b=b+a.$$

That is, R as a group under addition is a commutative or Abelian group.

(v) For every $a, b, c \in \mathbb{R}$, there holds

$$(ab)c = a(bc). \tag{16.5}$$

(vi) There is a multiplicative identity $1 \in R$ for which

$$a1 = 1a = a \tag{16.6}$$

for every $a \in R$.

It may be noted that conditions (\mathbf{v}) - (\mathbf{vi}) make R a monoid under multiplication. Note that the existence of inverses under multiplication is not required and is not true in $\mathbb{R}^{n \times n}$ where the multiplicative identity is the identity matrix. Also, commutativity of the multiplication is not required and does not hold in $\mathbb{R}^{n \times n}$ for n > 1. Note finally, that property (\mathbf{vi}) is not expressing anything about any kind of scaling. In particular, if this definition is applied to the $n \times n$ matrices, then the symbol 1 should be interpreted as the identity matrix $1 \in \mathbb{R}^{n \times n}$ rather than the scalar $1 \in \mathbb{R}$, though in that case the scaling 1a or more generally ca for $c \in \mathbb{R}$ and $a \in \mathbb{R}^{n \times n}$ does make sense and appears notationally identical.

16.2. MATRIX GROUPS

(vii) Multiplication is distributive across addition: For $a, b, c \in R$ there holds

$$a(b+c) = ab + ac \tag{16.7}$$

$$(a+b)c = ac + bc.$$
 (16.8)

Note that the ring multiplication is not required to be commutative here, so there are left distributive (16.7) and a right distributive (16.8) properties. Again, the identities (16.7) and (16.8) have nothing to do with scaling as encountered with a vector space or a module.

When the algebraic structure of a ring is applied to $\mathbb{R}^{n \times n}$ the emphasis is usually on the operation of multiplication of matrices. This may be said to hold more generally as well. A ring is said to be a **commutative** ring if the multiplication is commutative. An element in a ring for which a multiplicative inverse exists is called **invertible**.

Exercise 16.10. Verify the following assertions concerning a ring R and the ring $\mathbb{R}^{n \times n}$ of $n \times n$ matrices in particular:

- (a) 0a = 0 for every $a \in R$.
- (b) If $a \in R$ and there is some $b \in R$ for which ab = 1, then the element b is called a **right inverse** for a. Show that if a_1 and a_2 have right inverses, then a_1a_2 has a right inverse.
- (c) Show

 $R^{\times} = \{a \in R : \text{for some } b, c \in R \text{ there holds } ab = ca = 1\}$

is closed under multiplication.

- (d) If $a \in R^{\times}$ and b denotes a right inverse of a and c denotes a left inverse of a, then b = c. Hint: Remember the proof that inverses in a group are unique. In particular, if ab = ba = 1 and $a\tilde{b} = \tilde{b}a = 1$, then $b = b(1) = b(a\tilde{b})$.
- (e) Conclude from part (d) that

 $R^{\times} = \{ a \in R : \text{for some } b \in R \text{ there holds } ab = ba = 1 \},\$

and show R^{\times} is a multiplicative group. Hint: It still remains to show that if ba = 1 for some $a \in R^{\times}$, then $b \in R^{\times}$.

(f) The multiplicative inverses in a ring are unique.

The multiplicative group R^{\times} considered above is called the group of **invert-ible elements**.

Exercise 16.11. Identify R^{\times} for the ring $R = \mathbb{R}^{n \times n}$.

Exercise 16.12. Verify the following assertions concerning a ring R and the ring $\mathbb{R}^{n \times n}$ of $n \times n$ matrices in particular:

- (a) $Z(R) = \{a \in R : ab = ba \text{ for every } b \in R\}$ is a subring of R. This ring is called the **center** of the ring R or the center of the monoid under multiplication.
- (b) $R^{\times} \cap Z(R)$ is a group (under multiplication).

(c) If $R^{\times} \cap Z(R) = Z(R)$, then $R = \{0\}$.

Exercise 16.13. Identify Z(R) and the subgroup $R^{\times} \cap Z(R)$ for the ring $R = \mathbb{R}^{n \times n}$.

Exercise 16.14. In a general ring R if 0 = 1, then $R = \{0\}$.

Exercise 16.15. Give an example of a pair of 2×2 matrices in $\mathbb{R}^{2 \times 2}$ which do not commute under matrix multiplication.

16.3 Warm Up

The following exercises give a suggestion for a direction in understanding something about Lie groups.

Exercise 16.16. Describe the following subsets of \mathbb{R}^3 :

(a)
$$\{\mathbf{x} = (x_1, x_2, x_3) : x_1x_3 - x_2 = 0\}.$$

(b)
$$R = \{ \mathbf{x} = (x_1, x_2, x_3) : x_1 x_3 - x_2 < 0 \}$$

(c) $L = \{ \mathbf{x} = (x_1, x_2, x_3) : x_1 x_3 - x_2 > 0 \}.$

174

Exercise 16.17. Describe the following subsets of \mathbb{R}^2 :

(a) {
$$\mathbf{x} = (x_2, x_3) : (x_1, x_2, x_3) \in \partial R, x_1 < 0$$
}.
(b) { $\mathbf{x} = (x_2, x_3) : (x_1, x_2, x_3) \in \partial R, x_1 = 0$ }.
(c) { $\mathbf{x} = (x_2, x_3) : (x_1, x_2, x_3) \in \partial R, x_1 > 0$ }.

Exercise 16.18. Given the set $\Omega \subset \mathbb{R}^2$ (described in each part below) find an extended real valued function $h: \Omega \to \mathbb{R} \cup \{\pm \infty\}$ for which

$$\{\mathbf{x} = (x_1, x_2, x_3) \in R : (x_1, x_2) \in \Omega\}$$

= $\{\mathbf{x} = (x_1, x_2, x_3) : (x_1, x_2) \in \Omega, x_3 > h(x_1, x_2)\}.$

A set of this form is called a **supergraph**.

- (a) $\Omega = \Omega_{-} = \{ \mathbf{x} = (x_1, x_2) : x_1 < 0 \}.$
- **(b)** $\Omega = \Omega_0 = \{ \mathbf{x} = (x_1, x_2) : x_1 = 0 \}.$
- (c) $\Omega = \Omega_+ = \{ \mathbf{x} = (x_1, x_2) : x_1 > 0 \}.$

Exercise 16.19. Let $\Omega = \mathbb{R}^n$ and consider $h :\in C^0(\Omega)$. Show the following:

- (a) $A = \{(\mathbf{x}, x_{n+1}) : \mathbf{x} = (x_1, x_2, \dots, x_n), x_{n+1} < h(\mathbf{x})\}$ is an open connected subset of \mathbb{R}^{n+1} . In particular, the identity is a global chart function making A a manifold. (For example, a smooth Riemannian manifold with matrix assignment the constant identity matrix.)
- (b) $B = \{(\mathbf{x}, x_{n+1}) : \mathbf{x} = (x_1, x_2, \dots, x_n), x_{n+1} > h(\mathbf{x})\}$ is an open connected subset of \mathbb{R}^{n+1} .
- (c) $\partial A = \partial B = \mathcal{G}$ where

$$\mathcal{G} = \{ (\mathbf{x}, x_{n+1}) : \mathbf{x} = (x_1, x_2, \dots, x_n), \ x_{n+1} = h(\mathbf{x}) \}.$$

Exercise 16.20. Let $\mathbb{R}^{n \times n}$ denote the set of $n \times n$ matrices $a = (a_{ij})$ with real entries. Show the following:

- (a) $\mathbb{R}^{n \times n}$ is a group under (matrix) addition.
- (b) $\mathbb{R}^{n \times n}$ is a vector space over \mathbb{R} .

- (c) $\mathbb{R}^{n \times n}$ is a monoid under matrix multiplication.
- (d) $\mathbb{R}^{n \times n}$ is a ring under matrix addition and multiplication.

Exercise 16.21. (column bijection) Consider

$$\psi_c: \mathbb{R}^{n \times n} \to \mathbb{R}^{n^2}$$

by

$$\psi_c(a) = (c_1^T, c_2^T, \dots, c_n^T)$$

where

$$a = (a_{ij}) = (c_1 \ c_2 \ \dots \ c_n) \qquad \text{and} \qquad c_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}$$

denotes the *j*-th column of $a = (a_{ij})$ for $j = 1, 2, \ldots, n$.

- (a) Show ψ_c is a group isomorphism of additive groups.
- (b) Show ψ_c is a vector space isomorphism of real vector spaces.
- (c) Show ψ_c is a monoid isomorphism with respect to multiplication. (Write down the multiplication formula for **xy** where $\mathbf{x} = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ and $\mathbf{y} = (y_1, y_2, y_3, y_4) \in \mathbb{R}^4$. Can you generalize this to \mathbb{R}^{n^2} ?)
- (d) Show ψ_c is a ring isomorphism.

Exercise 16.22. (row bijection) Consider

$$\psi_r: \mathbb{R}^{n \times n} \to \mathbb{R}^{n^2}$$

by

$$\psi_r(a) = (r_1, r_2, \dots, r_n)$$

where

$$a = (a_{ij}) = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \quad \text{and} \quad r_i = (a_{i1}, a_{i2}, \cdots, a_{in})$$

denotes the *i*-th row of $a = (a_{ij})$ for $i = 1, 2, \ldots, n$.

- (a) Show ψ_r is a group isomorphism of additive groups.
- (b) Show ψ_r is a vector space isomorphism of real vector spaces.
- (c) Show ψ_r is a monoid isomorphism with respect to multiplication. (Write down the multiplication formula for **xy** where $\mathbf{x} = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ and $\mathbf{y} = (y_1, y_2, y_3, y_4) \in \mathbb{R}^4$. Can you generalize this to \mathbb{R}^{n^2} ?)
- (d) Show ψ_r is a ring isomorphism.

Exercise 16.23. $(GL_n(\mathbb{R}))$ The group of invertible elements R^{\times} considered in Exercise 16.10 when $R = \mathbb{R}^{n \times n}$ is the ring of real matrices is called $GL_n(\mathbb{R})$. In this case, we have a characterization of the invertible matrices in terms of a real valued function det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ called the determinant.

- (a) Use one of the bijections ψ_c or ψ_r to induce a topology on $\mathbb{R}^{n \times n}$ and Show det is continuous.
- (b) Conclude $\psi_r(GL_n(\mathbb{R}))$ and $\psi_c(GL_n(\mathbb{R}))$ are open subsets of \mathbb{R}^{n^2} .
- (c) What is the relation between $\psi_r(GL_n(\mathbb{R}))$ and $\psi_c(GL_n(\mathbb{R}))$?
- (d) Show $GL_n^+(\mathbb{R}) = \{a \in \mathbb{R}^{n \times n} : \det(a) > 0\}$ is a group under (matrix) multiplication.
- (e) Is $\mathbb{R}^{n \times n} \setminus GL_n(\mathbb{R})$ closed under matrix multiplication?

Exercise 16.24. $(GL_1(\mathbb{R}))$

- (a) What is $\mathbb{R}^{1 \times 1} \setminus GL_1(\mathbb{R})$?
- (b) What is $GL_1^+(\mathbb{R})$?
- (c) What is $GL_1(\mathbb{R})$?
- (d) $GL_1^+(\mathbb{R})$ and $GL_1(\mathbb{R})\backslash GL_1^+(\mathbb{R})$ are homeomorphic one-dimensional manifolds each of which admits a global chart. Give global charts \mathbf{p}_+ for $GL_1^+(\mathbb{R})$ and \mathbf{p}_- for $GL_1(\mathbb{R})\backslash GL_1^+(\mathbb{R})$, and give a homeomorphism $\psi: GL_1^+(\mathbb{R}) \to GL_1(\mathbb{R})\backslash GL_1^+(\mathbb{R}).$

- (e) Which of the following manifolds is a Lie group:
 - 1. $GL_1^+(\mathbb{R})$.
 - 2. $GL_1(\mathbb{R}) \setminus GL_1^+(\mathbb{R})$.
 - 3. $GL_1(\mathbb{R})$.
 - 4. $\mathbb{R}^{1 \times 1} \setminus GL_1(\mathbb{R}).$
- (f) $\mathbb{R}^{n \times n} \setminus GL_n(\mathbb{R})$ is not a Lie group for n > 1. Why not?

Exercise 16.25. $(GL_2(\mathbb{R}))$ Express the following as sets in \mathbb{R}^4 :

- (a) $\psi_c(GL_2(\mathbb{R})).$
- (b) $\psi_c(GL_2^+(\mathbb{R})).$
- (c) $\psi_c(\mathbb{R}^{2\times 2}\setminus GL_2(\mathbb{R})).$
- (d) $\psi_r(GL_2(\mathbb{R})).$
- (e) $\psi_r(GL_2^+(\mathbb{R})).$
- (f) $\psi_r(\mathbb{R}^{2\times 2}\setminus GL_2(\mathbb{R})).$

Example: (a) $\psi_c(GL_2(\mathbb{R})) = \{\mathbf{x} = (x_1, x_2, x_3, x_4) : x_1x_4 - x_2x_3 \neq 0\}$. The next exercises are intended to give further insight in to the nature of these particular sets.

Exercise 16.26. You may wish to review Exercises 16.16-16.19 before undertaking this exercise.

(a) Let $\Omega_{-} = \{ (\mathbf{x} = (x_1, x_2, x_3) : x_1 < 0 \}$. Find a function $h \in C^0(\Omega_{-})$ for which

$$\{\mathbf{x} = (x_1, x_2, x_3, x_4) \in \psi_r(GL_2^+(\mathbb{R})) : (x_1, x_2, x_3) \in \Omega_-\} \\ = \{\mathbf{x} = (x_1, x_2, x_3, x_4) : (x_1, x_2, x_3) \in \Omega_-, \ x_4 > h(x_1, x_2, x_3)\}$$

and

$$\{\mathbf{x} = (x_1, x_2, x_3, x_4) \in \psi_r(\mathbb{R}^{2 \times 2} \setminus GL_2(\mathbb{R})) : (x_1, x_2, x_3) \in \Omega_-\}$$

= $\{\mathbf{x} = (x_1, x_2, x_3, x_4) : (x_1, x_2, x_3) \in \Omega_-, x_4 = h(x_1, x_2, x_3)\}.$

(b) Let $\Omega_+ = \{ (\mathbf{x} = (x_1, x_2, x_3) : x_1 > 0 \}$. Find a function $h \in C^0(\Omega_+)$ for which

$$\{\mathbf{x} = (x_1, x_2, x_3, x_4) \in \psi_r(GL_2^+(\mathbb{R})) : (x_1, x_2, x_3) \in \Omega_+\} \\ = \{\mathbf{x} = (x_1, x_2, x_3, x_4) : (x_1, x_2, x_3) \in \Omega_+, \ x_4 > h(x_1, x_2, x_3)\}$$

and

$$\{\mathbf{x} = (x_1, x_2, x_3, x_4) \in \psi_r(\mathbb{R}^{2 \times 2} \setminus GL_2(\mathbb{R})) : (x_1, x_2, x_3) \in \Omega_+ \}$$

=
$$\{\mathbf{x} = (x_1, x_2, x_3, x_4) : (x_1, x_2, x_3) \in \Omega_+, \ x_4 = h(x_1, x_2, x_3) \}.$$

(c) Let $\Omega_0 = \{ (\mathbf{x} = (x_1, x_2, x_3) : x_1 = 0 \}$. Describe/make an illustration of

$$\{\mathbf{x} = (x_1, x_2, x_3) \in \Omega_0 : (x_1, x_2, x_3, x_4) \in \partial \psi_k(GL_2(\mathbb{R}))\}.$$

Hint: Make first an illustration of

$$\{\mathbf{x} = (x_1, x_2, x_3, x_4) \in \partial \psi_k(GL_2(\mathbb{R})) : (x_1, x_2, x_3) \in \Omega_0\}.$$

Exercise 16.27. How many components does $\psi_r(GL_2^+(\mathbb{R}))$ have and what are they? (Fully justify your answer.)

Exercise 16.28. Give a global chart for the manifold

$$\psi_r(\mathbb{R}^{2\times 2}\setminus GL_2(\mathbb{R})) \bigcap \{\mathbf{x} = (x_1, x_2, x_3, x_4) : (x_1, x_2, x_3) \in \Omega_-\}$$

where Ω_{-} is defined in Exercise 16.27 part (a).

Exercise 16.29. Describe the set

$$\Sigma = \psi_r(\mathbb{R}^{2 \times 2} \setminus GL_2(\mathbb{R})) = \partial \psi_2(GL_2(\mathbb{R})).$$

Note $\psi_r(GL_2(\mathbb{R})) = \mathbb{R}^4 \setminus \Sigma$.

16.4 The matrix ring $\mathbb{R}^{2 \times 2}$

As mentioned above $\psi : \mathbb{R}^{2 \times 2} \to \mathbb{R}^4$ by $\psi(a_{ij}) = (a_{11}, a_{21}, a_{12}, a_{22})$ is a bijection, and by means of this bijection we can induce simple topological, vector space, normed space, inner product space, and Riemannian manifold structures on $\mathbb{R}^{2 \times 2}$. In turn, the ring structure involving the matrix multiplication

in $\mathbb{R}^{2\times 2}$ may be induced on \mathbb{R}^4 . Of course, the flat Riemannian manifold \mathbb{R}^4 is not a group with respect to the (induced matrix) multiplcation, but it is a ring. Various subsets of $\mathbb{R}^{2\times 2}$ and by the bijective correspondence \mathbb{R}^4 may be considered. In particular, $GL_2(\mathbb{R})$ is a group, and it may be interesting to understand the corresponding subset of \mathbb{R}^4 . Within $GL_2(\mathbb{R})$ are the **rotation matrices**

$$SL_2(\mathbb{R}) = \{A \in GL_2(\mathbb{R}) : \det A = 1\}$$

and the larger set of orthogonal matrices

$$O_2(\mathbb{R}) = \{ A \in GL_2(\mathbb{R}) : |\det A| = 1 \}.$$

These are also both (sub)groups under matrix multiplication. Other subsets which are not groups (or subgroups) are the collection of **symmetric matrices**

$$\operatorname{Sym}_n(\mathbb{R}) = \{ A \in \mathbb{R}^{2 \times 2} : A^T = A \}$$

and the collection

 $O_2(\mathbb{R}) \setminus SL_2(\mathbb{R}).$

It may be interesting to consider for each of these sets the bijectively corresponding subsets, and possibly submanifolds, of \mathbb{R}^4 . Finally, consideration of $GL_2(\mathbb{R})$ naturally suggests the consideration of $\mathbb{R}^{2\times 2} \setminus GL_2(\mathbb{R})$ and the bijectively corresponding set in \mathbb{R}^4 .

Exercise 16.30. Show

$$O_2(\mathbb{R}) = \{ A \in GL_n(\mathbb{R}) : A^T = A^{-1} \}.$$

16.5 \mathbb{S}^1 as a group

I haven't given a formal definition of a Lie group yet, but that should not stop us from considering an example of one. We know \mathbb{S}^1 is a C^{∞} submanifold of \mathbb{R}^2 . **Universal covering maps** of \mathbb{S}^1 are given by $\mathbf{p} : \mathbb{R} \to \mathbb{S}^1$ and $\mathbf{q} : \mathbb{R} \to \mathbb{S}^1$ by

$$\mathbf{p}(t) = (\cos t, \sin t) \quad \text{and} \quad \mathbf{q}(t) = (\cos(2\pi t), \sin(2\pi t)) \quad (16.9)$$

respectively. If $P_1, P_2 \in \mathbb{S}^1$ and $t_j \in \mathbb{R}$ with $\mathbf{p}(t_j) = P_j$ for j = 1, 2, then $\mathbf{p}(t_1 + t_2)$ determines a unique point in \mathbb{S}^1 . To see this, note that for j = 1, 2 we have

$$\mathbf{p}(P_j) = \{t \in \mathbb{R} : (\cos t, \sin t) = P_j\} = \{t_j + 2\pi k : k \in \mathbb{Z}\}.$$

16.6. $SL_2(\mathbb{R})$

Thus, for each $\tilde{t}_j \in \mathbf{p}^{-1}(P_j)$, j = 1, 2 there is some k_j with $\tilde{t}_j = t_j + 2\pi k_j$. Therefore,

$$\mathbf{p}(\tilde{t}_1 + \tilde{t}_2) = (\cos[t_1 + t_2 + 2\pi(k_1 + k_2)], \sin[t_1 + t_2 + 2\pi(k_1 + k_2)]$$

= $(\cos(t_1 + t_2), \sin(t_1 + t_2))$
= $\mathbf{p}(t_1 + t_2).$

. Thus, setting $P_1 + P_2 = \mathbf{p}(t_1 + t_2)$ gives a well-defined operation of addition on $\mathbb{S}^1 \times \mathbb{S}^1$.

Exercise 16.31. Show the operation $+ : \mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{S}^1$ defined by $P_1 + P_2 = \mathbf{p}(t_1 + t_2)$ above is associative and makes \mathbb{S}^1 a commutative group under addition.

Exercise 16.32. Illustrate with a drawing the group operation $+ : \mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{S}^1$ considered in Exercise 16.31

Exercise 16.33. Show that for each $P_0 \in \mathbb{S}^1$, the function $f : \mathbb{S}^1 \to \mathbb{S}^1$ by $f(P) = P + P_0$ satisfies $f \in C^{\infty}(\mathbb{S}^1 \to \mathbb{S}^1)$.

Exercise 16.34. Can you make sense of what it would mean for the function $f \in C^{\infty}(\mathbb{S}^1 \to \mathbb{S}^1)$ from the previous problem to satisfy $f \in C^{\omega}(\mathbb{S}^1 \to \mathbb{S}^1)$.

Exercise 16.35. Use the universal covering map $\mathbf{q} : \mathbb{R} \to \mathbb{S}^1$ defined in (16.9) above to define a group structure on \mathbb{S}^1 . Do you get the same group addition or a different one?

16.6 $SL_2(\mathbb{R})$

Exercise 16.36. Use the (restriction of the) canonical bijection $\psi : \mathbb{R}^{2\times 2} \to \mathbb{R}^4$ to obtain a universal covering map $\mathbf{p} : \mathbb{R} \to \psi(SL_2(\mathbb{R}))$. Show the image $\mathbf{p}(\mathbb{R})$ is a circle (in a flat two-plane) in

$$\mathbb{S}_{\sqrt{2}}^3 = \{ \mathbf{x} = (x_1, x_2, x_3, x_4) : x_1^2 + x_2^2 + x_3^2 + x_4^2 = 2 \}.$$

Exercise 16.37. Use (a) stereographic projection $\sigma : \mathbb{S}^3_{\sqrt{2}} \to \mathbb{R}^3$ to visualize $\psi(SL_2(\mathbb{R}))$ and $\psi(O_2(\mathbb{R}) \setminus SL_2(\mathbb{R}))$ in \mathbb{R}^4 .

Exercise 16.38. Use your visualization from Exercise 16.37 to illustrate with a drawing the group operation of matrix multiplication in $\mathbb{R}^{2\times 2}$ on $SL_2(\mathbb{R})$ induced on $\psi(SL_2(\mathbb{R})) \subset \mathbb{R}^4$.

Exercise 16.39. Group action of $SL_2(\mathbb{R})$ on $O_2(\mathbb{R})$.