mined by

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1+0=0 \\
& 0+2=2+0=0 \\
& 0+3=3+0=0 \\
& 1+1=1 \\
& 1+2=2+1=2 \\
& 1+3=3+1=3 \\
& 2+2=0 \\
& 2+3=3+2=2 \\
& 3+3=1 .
\end{aligned}
$$

(i) Show the operation is associative and there is an identity element, so A is a monoid under this operation.
(ii) Show that \mathbb{Z}_{4} is not a group under this operation.
(iii) Find all subsets of \mathbb{Z}_{4} which are groups under this opearation.
(iv) How does what you found in part (iii) harmonize with Exercise 16.5?
(v) If we define a subgroup H of a group G to be a subset of G which is itself a group (under the same operation), determine which of the (distinct) groups you found in part (iii) are subgroups one of another.
Note: The Wikipedia page on "Green's relations" has a nice discussion and example related to this exercise.

16.2 Matrix groups

The $n \times n$ matrices with real entries, mentioned above and denoted by $\mathbb{R}^{n \times n}$, do not constitute a group under matrix multiplication, though they do constitute a group under addition. In fact, one proper algebraic classification for $\mathbb{R}^{n \times n}$ is that $\mathbb{R}^{n \times n}$ is a ring.

Definition 21. (ring) A set R is called a ring if there are operations of addition and multiplication for which the set R and the operations together satisfy the following conditions:
(i) For every $a, b, c \in R$, there holds

$$
\begin{equation*}
(a+b)+c=a+(b+c) . \tag{16.3}
\end{equation*}
$$

(ii) There is a zero element $0 \in R$ for which

$$
\begin{equation*}
a+0=0+a=a \tag{16.4}
\end{equation*}
$$

for every $a \in R$.
(iii) For each $a \in R$, there is an additive inverse $-a \in R$ for which

$$
a+(-a)=(-a)+a=0
$$

The conditions (i)-(iii) say that R is a group under addition.
(iv) For each $a, b \in R$ there holds

$$
a+b=b+a
$$

That is, R as a group under addition is a commutative or Abelian group.
(v) For every $a, b, c \in R$, there holds

$$
\begin{equation*}
(a b) c=a(b c) \tag{16.5}
\end{equation*}
$$

(vi) There is a multiplicative identity $1 \in R$ for which

$$
\begin{equation*}
a 1=1 a=a \tag{16.6}
\end{equation*}
$$

for every $a \in R$.
It may be noted that conditions (\mathbf{v})-(vi) make R a monoid under multiplication. Note that the existence of inverses under multiplication is not required and is not true in $\mathbb{R}^{n \times n}$ where the multiplicative identity is the identity matrix. Also, commutativity of the multiplication is not required and does not hold in $\mathbb{R}^{n \times n}$ for $n>1$. Note finally, that property ($\mathbf{v i}$) is not expressing anything about any kind of scaling. In particular, if this definition is applied to the $n \times n$ matrices, then the symbol 1 should be interpreted as the identity matrix $1 \in \mathbb{R}^{n \times n}$ rather than the scalar $1 \in \mathbb{R}$, though in that case the scaling $1 a$ or more generally $c a$ for $c \in \mathbb{R}$ and $a \in \mathbb{R}^{n \times n}$ does make sense and appears notationally identical.
(vii) Multiplication is distributive across addition: For $a, b, c \in R$ there holds

$$
\begin{align*}
& a(b+c)=a b+a c \tag{16.7}\\
& (a+b) c=a c+b c \tag{16.8}
\end{align*}
$$

Note that the ring multiplication is not required to be commutative here, so there are left distributive (16.7) and a right distributive (16.8) properties. Again, the identities (16.7) and (16.8) have nothing to do with scaling as encountered with a vector space or a module.

When the algebraic structure of a ring is applied to $\mathbb{R}^{n \times n}$ the emphasis is usually on the operation of multiplication of matrices. This may be said to hold more generally as well. A ring is said to be a commutative ring if the multiplication is commutative. An element in a ring for which a multiplicative inverse exists is called invertible.

Exercise 16.10. Verify the following assertions concerning a ring R and the ring $\mathbb{R}^{n \times n}$ of $n \times n$ matrices in particular:
(a) $0 a=0$ for every $a \in R$.
(b) If $a \in R$ and there is some $b \in R$ for which $a b=1$, then the element b is called a right inverse for a. Show that if a_{1} and a_{2} have right inverses, then $a_{1} a_{2}$ has a right inverse.
(c) Show

$$
R^{\times}=\{a \in R: \text { for some } b, c \in R \text { there holds } a b=c a=1\}
$$

is closed under multiplication.
(d) If $a \in R^{\times}$and b denotes a right inverse of a and c denotes a left inverse of a, then $b=c$. Hint: Remember the proof that inverses in a group are unique. In particular, if $a b=b a=1$ and $a \tilde{b}=\tilde{b} a=1$, then $b=b(1)=b(a \tilde{b})$.
(e) Conclude from part (d) that

$$
R^{\times}=\{a \in R: \text { for some } b \in R \text { there holds } a b=b a=1\}
$$

and show R^{\times}is a multiplicative group. Hint: It still remains to show that if $b a=1$ for some $a \in R^{\times}$, then $b \in R^{\times}$.
(f) The multiplicative inverses in a ring are unique.

The multiplicative group R^{\times}considered above is called the group of invertible elements.

Exercise 16.11. Identify R^{\times}for the ring $R=\mathbb{R}^{n \times n}$.
Exercise 16.12. Verify the following assertions concerning a ring R and the ring $\mathbb{R}^{n \times n}$ of $n \times n$ matrices in particular:
(a) $Z(R)=\{a \in R: a b=b a$ for every $b \in R\}$ is a subring of R. This ring is called the center of the ring R or the center of the monoid under multiplication.
(b) $R^{\times} \cap Z(R)$ is a group (under multiplication).
(c) If $R^{\times} \cap Z(R)=Z(R)$, then $R=\{0\}$.

Exercise 16.13. Identify $Z(R)$ and the subgroup $R^{\times} \cap Z(R)$ for the ring $R=\mathbb{R}^{n \times n}$.

Exercise 16.14. In a general ring R if $0=1$, then $R=\{0\}$.
Exercise 16.15. Give an example of a pair of 2×2 matrices in $\mathbb{R}^{2 \times 2}$ which do not commute under matrix multiplication.

16.3 Warm Up

The following exercises give a suggestion for a direction in understanding something about Lie groups.

Exercise 16.16. Describe the following subsets of \mathbb{R}^{3} :
(a) $\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right): x_{1} x_{3}-x_{2}=0\right\}$.
(b) $R=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right): x_{1} x_{3}-x_{2}<0\right\}$.
(c) $L=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right): x_{1} x_{3}-x_{2}>0\right\}$.

Exercise 16.17. Describe the following subsets of \mathbb{R}^{2} :
(a) $\left\{\mathbf{x}=\left(x_{2}, x_{3}\right):\left(x_{1}, x_{2}, x_{3}\right) \in \partial R, x_{1}<0\right\}$.
(b) $\left\{\mathbf{x}=\left(x_{2}, x_{3}\right):\left(x_{1}, x_{2}, x_{3}\right) \in \partial R, x_{1}=0\right\}$.
(c) $\left\{\mathbf{x}=\left(x_{2}, x_{3}\right):\left(x_{1}, x_{2}, x_{3}\right) \in \partial R, x_{1}>0\right\}$.

Exercise 16.18. Given the set $\Omega \subset \mathbb{R}^{2}$ (described in each part below) find an extended real valued function $h: \Omega \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ for which

$$
\begin{aligned}
\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)\right. & \left.\in R:\left(x_{1}, x_{2}\right) \in \Omega\right\} \\
& =\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right):\left(x_{1}, x_{2}\right) \in \Omega, x_{3}>h\left(x_{1}, x_{2}\right)\right\}
\end{aligned}
$$

A set of this form is called a supergraph.
(a) $\Omega=\Omega_{-}=\left\{\mathbf{x}=\left(x_{1}, x_{2}\right): x_{1}<0\right\}$.
(b) $\Omega=\Omega_{0}=\left\{\mathbf{x}=\left(x_{1}, x_{2}\right): x_{1}=0\right\}$.
(c) $\Omega=\Omega_{+}=\left\{\mathbf{x}=\left(x_{1}, x_{2}\right): x_{1}>0\right\}$.

Exercise 16.19. Let $\Omega=\mathbb{R}^{n}$ and consider $h: \in C^{0}(\Omega)$. Show the following:
(a) $A=\left\{\left(\mathbf{x}, x_{n+1}\right): \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{n+1}<h(\mathbf{x})\right\}$ is an open connected subset of \mathbb{R}^{n+1}. In particular, the identity is a global chart function making A a manifold. (For example, a smooth Riemannian manifold with matrix assignment the constant identity matrix.)
(b) $B=\left\{\left(\mathbf{x}, x_{n+1}\right): \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{n+1}>h(\mathbf{x})\right\}$ is an open connected subset of \mathbb{R}^{n+1}.
(c) $\partial A=\partial B=\mathcal{G}$ where

$$
\mathcal{G}=\left\{\left(\mathbf{x}, x_{n+1}\right): \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{n+1}=h(\mathbf{x})\right\} .
$$

Exercise 16.20. Let $\mathbb{R}^{n \times n}$ denote the set of $n \times n$ matrices $a=\left(a_{i j}\right)$ with real entries. Show the following:
(a) $\mathbb{R}^{n \times n}$ is a group under (matrix) addition.
(b) $\mathbb{R}^{n \times n}$ is a vector space over \mathbb{R}.
(c) $\mathbb{R}^{n \times n}$ is a monoid under matrix multiplication.
(d) $\mathbb{R}^{n \times n}$ is a ring under matrix addition and multiplication.

Exercise 16.21. (column bijection) Consider

$$
\psi_{c}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n^{2}}
$$

by

$$
\psi_{c}(a)=\left(c_{1}^{T}, c_{2}^{T}, \ldots, c_{n}^{T}\right)
$$

where

$$
a=\left(a_{i j}\right)=\left(\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n}
\end{array}\right) \quad \text { and } \quad c_{j}=\left(\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{n j}
\end{array}\right)
$$

denotes the j-th column of $a=\left(a_{i j}\right)$ for $j=1,2, \ldots, n$.
(a) Show ψ_{c} is a group isomorphism of additive groups.
(b) Show ψ_{c} is a vector space isomorphism of real vector spaces.
(c) Show ψ_{c} is a monoid isomorphism with respect to multiplication. (Write down the multiplication formula for $\mathbf{x y}$ where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in \mathbb{R}^{4}$. Can you generalize this to $\mathbb{R}^{n^{2}}$? $)$
(d) Show ψ_{c} is a ring isomorphism.

Exercise 16.22. (row bijection) Consider

$$
\psi_{r}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n^{2}}
$$

by

$$
\psi_{r}(a)=\left(r_{1}, r_{2}, \ldots, r_{n}\right)
$$

where

$$
a=\left(a_{i j}\right)=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right) \quad \text { and } \quad r_{i}=\left(a_{i 1}, a_{i 2}, \cdots, a_{i n}\right)
$$

denotes the i-th row of $a=\left(a_{i j}\right)$ for $i=1,2, \ldots, n$.
(a) Show ψ_{r} is a group isomorphism of additive groups.
(b) Show ψ_{r} is a vector space isomorphism of real vector spaces.
(c) Show ψ_{r} is a monoid isomorphism with respect to multiplication. (Write down the multiplication formula for $\mathbf{x y}$ where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in \mathbb{R}^{4}$. Can you generalize this to $\mathbb{R}^{n^{2}}$?)
(d) Show ψ_{r} is a ring isomorphism.

Exercise 16.23. $\left(G L_{n}(\mathbb{R})\right)$ The group of invertible elements R^{\times}considered in Exercise 16.10 when $R=\mathbb{R}^{n \times n}$ is the ring of real matrices is called $G L_{n}(\mathbb{R})$. In this case, we have a characterization of the invertible matrices in terms of a real valued function det : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ called the determinant.
(a) Use one of the bijections ψ_{c} or ψ_{r} to induce a topology on $\mathbb{R}^{n \times n}$ and Show det is continuous.
(b) Conclude $\psi_{r}\left(G L_{n}(\mathbb{R})\right)$ and $\psi_{c}\left(G L_{n}(\mathbb{R})\right)$ are open subsets of $\mathbb{R}^{n^{2}}$.
(c) What is the relation between $\psi_{r}\left(G L_{n}(\mathbb{R})\right)$ and $\psi_{c}\left(G L_{n}(\mathbb{R})\right)$?
(d) Show $G L_{n}^{+}(\mathbb{R})=\left\{a \in \mathbb{R}^{n \times n}: \operatorname{det}(a)>0\right\}$ is a group under (matrix) multiplication.
(e) Is $\mathbb{R}^{n \times n} \backslash G L_{n}(\mathbb{R})$ closed under matrix multiplication?

Exercise 16.24. $\left(G L_{1}(\mathbb{R})\right)$
(a) What is $\mathbb{R}^{1 \times 1} \backslash G L_{1}(\mathbb{R})$?
(b) What is $G L_{1}^{+}(\mathbb{R})$?
(c) What is $G L_{1}(\mathbb{R})$?
(d) $G L_{1}^{+}(\mathbb{R})$ and $G L_{1}(\mathbb{R}) \backslash G L_{1}^{+}(\mathbb{R})$ are homeomorphic one-dimensional manifolds each of which admits a global chart. Give global charts \mathbf{p}_{+} for $G L_{1}^{+}(\mathbb{R})$ and \mathbf{p}_{-}for $G L_{1}(\mathbb{R}) \backslash G L_{1}^{+}(\mathbb{R})$, and give a homeomorphism $\psi: G L_{1}^{+}(\mathbb{R}) \rightarrow G L_{1}(\mathbb{R}) \backslash G L_{1}^{+}(\mathbb{R})$.
(e) Which of the following manifolds is a Lie group:

1. $G L_{1}^{+}(\mathbb{R})$.
2. $G L_{1}(\mathbb{R}) \backslash G L_{1}^{+}(\mathbb{R})$.
3. $G L_{1}(\mathbb{R})$.
4. $\mathbb{R}^{1 \times 1} \backslash G L_{1}(\mathbb{R})$.
(f) $\mathbb{R}^{n \times n} \backslash G L_{n}(\mathbb{R})$ is not a Lie group for $n>1$. Why not?

Exercise 16.25. $\left(G L_{2}(\mathbb{R})\right)$ Express the following as sets in \mathbb{R}^{4} :
(a) $\psi_{c}\left(G L_{2}(\mathbb{R})\right)$.
(b) $\psi_{c}\left(G L_{2}^{+}(\mathbb{R})\right)$.
(c) $\psi_{c}\left(\mathbb{R}^{2 \times 2} \backslash G L_{2}(\mathbb{R})\right)$.
(d) $\psi_{r}\left(G L_{2}(\mathbb{R})\right)$.
(e) $\psi_{r}\left(G L_{2}^{+}(\mathbb{R})\right)$.
(f) $\psi_{r}\left(\mathbb{R}^{2 \times 2} \backslash G L_{2}(\mathbb{R})\right)$.

Example: (a) $\psi_{c}\left(G L_{2}(\mathbb{R})\right)=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1} x_{4}-x_{2} x_{3} \neq 0\right\}$. The next exercises are intended to give further insight in to the nature of these particular sets.

Exercise 16.26. You may wish to review Exercises 16.16-16.19 before undertaking this exercise.
(a) Let $\Omega_{-}=\left\{\left(\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right): x_{1}<0\right\}\right.$. Find a function $h \in C^{0}\left(\Omega_{-}\right)$for which

$$
\begin{aligned}
& \left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \psi_{r}\left(G L_{2}^{+}(\mathbb{R})\right):\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{-}\right\} \\
& \quad=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right):\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{-}, x_{4}>h\left(x_{1}, x_{2}, x_{3}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \psi_{r}\left(\mathbb{R}^{2 \times 2} \backslash G L_{2}(\mathbb{R})\right):\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{-}\right\} \\
& \quad=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right):\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{-}, x_{4}=h\left(x_{1}, x_{2}, x_{3}\right)\right\}
\end{aligned}
$$

(b) Let $\Omega_{+}=\left\{\left(\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right): x_{1}>0\right\}\right.$. Find a function $h \in C^{0}\left(\Omega_{+}\right)$for which

$$
\begin{aligned}
& \left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \psi_{r}\left(G L_{2}^{+}(\mathbb{R})\right):\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{+}\right\} \\
& \quad=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right):\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{+}, x_{4}>h\left(x_{1}, x_{2}, x_{3}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \psi_{r}\left(\mathbb{R}^{2 \times 2} \backslash G L_{2}(\mathbb{R})\right):\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{+}\right\} \\
& \quad=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right):\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{+}, x_{4}=h\left(x_{1}, x_{2}, x_{3}\right)\right\} .
\end{aligned}
$$

(c) Let $\Omega_{0}=\left\{\left(\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right): x_{1}=0\right\}\right.$. Describe/make an illustration of

$$
\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{0}:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \partial \psi_{k}\left(G L_{2}(\mathbb{R})\right)\right\} .
$$

Hint: Make first an illustration of

$$
\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \partial \psi_{k}\left(G L_{2}(\mathbb{R})\right):\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{0}\right\} .
$$

Exercise 16.27. How many components does $\psi_{r}\left(G L_{2}^{+}(\mathbb{R})\right)$ have and what are they? (Fully justify your answer.)

Exercise 16.28. Give a global chart for the manifold

$$
\psi_{r}\left(\mathbb{R}^{2 \times 2} \backslash G L_{2}(\mathbb{R})\right) \bigcap\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right):\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{-}\right\}
$$

where Ω_{-}is defined in Exercise 16.27 part (a).
Exercise 16.29. Describe the set

$$
\Sigma=\psi_{r}\left(\mathbb{R}^{2 \times 2} \backslash G L_{2}(\mathbb{R})\right)=\partial \psi_{2}\left(G L_{2}(\mathbb{R})\right)
$$

Note $\psi_{r}\left(G L_{2}(\mathbb{R})\right)=\mathbb{R}^{4} \backslash \Sigma$.

16.4 The matrix ring $\mathbb{R}^{2 \times 2}$

As mentioned above $\psi: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{4}$ by $\psi\left(a_{i j}\right)=\left(a_{11}, a_{21}, a_{12}, a_{22}\right)$ is a bijection, and by means of this bijection we can induce simple topological, vector space, normed space, inner product space, and Riemannian manifold structures on $\mathbb{R}^{2 \times 2}$. In turn, the ring structure involving the matrix multiplication
in $\mathbb{R}^{2 \times 2}$ may be induced on \mathbb{R}^{4}. Of course, the flat Riemannian manifold \mathbb{R}^{4} is not a group with respect to the (induced matrix) multiplcation, but it is a ring. Various subsets of $\mathbb{R}^{2 \times 2}$ and by the bijective correspondence \mathbb{R}^{4} may be considered. In particular, $G L_{2}(\mathbb{R})$ is a group, and it may be interesting to understand the corresponding subset of \mathbb{R}^{4}. Within $G L_{2}(\mathbb{R})$ are the rotation matrices

$$
S L_{2}(\mathbb{R})=\left\{A \in G L_{2}(\mathbb{R}): \operatorname{det} A=1\right\}
$$

and the larger set of orthogonal matrices

$$
O_{2}(\mathbb{R})=\left\{A \in G L_{2}(\mathbb{R}):|\operatorname{det} A|=1\right\}
$$

These are also both (sub)groups under matrix multiplication. Other subsets which are not groups (or subgroups) are the collection of symmetric matrices

$$
\operatorname{Sym}_{n}(\mathbb{R})=\left\{A \in \mathbb{R}^{2 \times 2}: A^{T}=A\right\}
$$

and the collection

$$
O_{2}(\mathbb{R}) \backslash S L_{2}(\mathbb{R})
$$

It may be interesting to consider for each of these sets the bijectively corresponding subsets, and possibly submanifolds, of \mathbb{R}^{4}. Finally, consideration of $G L_{2}(\mathbb{R})$ naturally suggests the consideration of $\mathbb{R}^{2 \times 2} \backslash G L_{2}(\mathbb{R})$ and the bijectively corresponding set in \mathbb{R}^{4}.
Exercise 16.30. Show

$$
O_{2}(\mathbb{R})=\left\{A \in G L_{n}(\mathbb{R}): A^{T}=A^{-1}\right\}
$$

$16.5 \mathbb{S}^{1}$ as a group

I haven't given a formal definition of a Lie group yet, but that should not stop us from considering an example of one. We know \mathbb{S}^{1} is a C^{∞} submanifold of \mathbb{R}^{2}. Universal covering maps of \mathbb{S}^{1} are given by $\mathbf{p}: \mathbb{R} \rightarrow \mathbb{S}^{1}$ and $\mathrm{q}: \mathbb{R} \rightarrow \mathbb{S}^{1}$ by

$$
\begin{equation*}
\mathbf{p}(t)=(\cos t, \sin t) \quad \text { and } \quad \mathbf{q}(t)=(\cos (2 \pi t), \sin (2 \pi t)) \tag{16.9}
\end{equation*}
$$

respectively. If $P_{1}, P_{2} \in \mathbb{S}^{1}$ and $t_{j} \in \mathbb{R}$ with $\mathbf{p}\left(t_{j}\right)=P_{j}$ for $j=1,2$, then $\mathbf{p}\left(t_{1}+t_{2}\right)$ determines a unique point in \mathbb{S}^{1}. To see this, note that for $j=1,2$ we have

$$
\mathbf{p}\left(P_{j}\right)=\left\{t \in \mathbb{R}:(\cos t, \sin t)=P_{j}\right\}=\left\{t_{j}+2 \pi k: k \in \mathbb{Z}\right\} .
$$

Thus, for each $\tilde{t}_{j} \in \mathbf{p}^{-1}\left(P_{j}\right), j=1,2$ there is some k_{j} with $\tilde{t}_{j}=t_{j}+2 \pi k_{j}$. Therefore,

$$
\begin{aligned}
\mathbf{p}\left(\tilde{t}_{1}+\tilde{t}_{2}\right) & =\left(\cos \left[t_{1}+t_{2}+2 \pi\left(k_{1}+k_{2}\right)\right], \sin \left[t_{1}+t_{2}+2 \pi\left(k_{1}+k_{2}\right)\right]\right. \\
& =\left(\cos \left(t_{1}+t_{2}\right), \sin \left(t_{1}+t_{2}\right)\right) \\
& =\mathbf{p}\left(t_{1}+t_{2}\right)
\end{aligned}
$$

. Thus, setting $P_{1}+P_{2}=\mathbf{p}\left(t_{1}+t_{2}\right)$ gives a well-defined operation of addition on $\mathbb{S}^{1} \times \mathbb{S}^{1}$.

Exercise 16.31. Show the operation $+: \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ defined by $P_{1}+P_{2}=$ $\mathbf{p}\left(t_{1}+t_{2}\right)$ above is associative and makes \mathbb{S}^{1} a commutative group under addition.

Exercise 16.32. Illustrate with a drawing the group operation $+: \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow$ \mathbb{S}^{1} considered in Exercise 16.31
Exercise 16.33. Show that for each $P_{0} \in \mathbb{S}^{1}$, the function $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ by $f(P)=P+P_{0}$ satisfies $f \in C^{\infty}\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right)$.

Exercise 16.34. Can you make sense of what it would mean for the function $f \in C^{\infty}\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right)$ from the previous problem to satisfy $f \in C^{\omega}\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right)$.
Exercise 16.35. Use the universal covering map $q: \mathbb{R} \rightarrow \mathbb{S}^{1}$ defined in (16.9) above to define a group structure on \mathbb{S}^{1}. Do you get the same group addition or a different one?

$16.6 \quad S L_{2}(\mathbb{R})$

Exercise 16.36. Use the (restriction of the) canonical bijection $\psi: \mathbb{R}^{2 \times 2} \rightarrow$ \mathbb{R}^{4} to obtain a universal covering map $\mathbf{p}: \mathbb{R} \rightarrow \psi\left(S L_{2}(\mathbb{R})\right.$. Show the image $\mathbf{p}(\mathbb{R})$ is a circle (in a flat two-plane) in

$$
\mathbb{S}_{\sqrt{2}}^{3}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=2\right\} .
$$

Exercise 16.37. Use (a) stereographic projection $\sigma: \mathbb{S}_{\sqrt{2}}^{3} \rightarrow \mathbb{R}^{3}$ to visualize $\psi\left(S L_{2}(\mathbb{R})\right)$ and $\psi\left(O_{2}(\mathbb{R}) \backslash S L_{2}(\mathbb{R})\right)$ in \mathbb{R}^{4}.
Exercise 16.38. Use your visualization from Exercise 16.37 to illustrate with a drawing the group operation of matrix multiplication in $\mathbb{R}^{2 \times 2}$ on $S L_{2}(\mathbb{R})$ induced on $\psi\left(S L_{2}(\mathbb{R})\right) \subset \mathbb{R}^{4}$.

Exercise 16.39. Group action of $S L_{2}(\mathbb{R})$ on $O_{2}(\mathbb{R})$.

