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mined by

0 + 0 = 0

0 + 1 = 1 + 0 = 0

0 + 2 = 2 + 0 = 0

0 + 3 = 3 + 0 = 0

1 + 1 = 1

1 + 2 = 2 + 1 = 2

1 + 3 = 3 + 1 = 3

2 + 2 = 0

2 + 3 = 3 + 2 = 2

3 + 3 = 1.

(i) Show the operation is associative and there is an identity element, so A
is a monoid under this operation.

(ii) Show that Z4 is not a group under this operation.

(iii) Find all subsets of Z4 which are groups under this opearation.

(iv) How does what you found in part (iii) harmonize with Exercise 16.5?

(v) If we define a subgroup H of a group G to be a subset of G which
is itself a group (under the same operation), determine which of the
(distinct) groups you found in part (iii) are subgroups one of another.

Note: The Wikipedia page on “Green’s relations” has a nice discussion and
example related to this exercise.

16.2 Matrix groups

The n×n matrices with real entries, mentioned above and denoted by R
n×n,

do not constitute a group under matrix multiplication, though they do con-
stitute a group under addition. In fact, one proper algebraic classification
for Rn×n is that Rn×n is a ring.

Definition 21. (ring) A set R is called a ring if there are operations of
addition and multiplication for which the set R and the operations together
satisfy the following conditions:
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(i) For every a, b, c ∈ R, there holds

(a+ b) + c = a+ (b+ c). (16.3)

(ii) There is a zero element 0 ∈ R for which

a+ 0 = 0 + a = a (16.4)

for every a ∈ R.

(iii) For each a ∈ R, there is an additive inverse −a ∈ R for which

a+ (−a) = (−a) + a = 0.

The conditions (i)-(iii) say that R is a group under addition.

(iv) For each a, b ∈ R there holds

a+ b = b+ a.

That is, R as a group under addition is a commutative or Abelian
group.

(v) For every a, b, c ∈ R, there holds

(ab)c = a(bc). (16.5)

(vi) There is a multiplicative identity 1 ∈ R for which

a1 = 1a = a (16.6)

for every a ∈ R.

It may be noted that conditions (v)-(vi) make R a monoid under multiplica-
tion. Note that the existence of inverses under multiplication is not required
and is not true in R

n×n where the multiplicative identity is the identity ma-
trix. Also, commutativity of the multiplication is not required and does not
hold in R

n×n for n > 1. Note finally, that property (vi) is not expressing
anything about any kind of scaling. In particular, if this definition is applied
to the n×n matrices, then the symbol 1 should be interpreted as the identity
matrix 1 ∈ R

n×n rather than the scalar 1 ∈ R, though in that case the scaling
1a or more generally ca for c ∈ R and a ∈ R

n×n does make sense and appears
notationally identical.
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(vii) Multiplication is distributive across addition: For a, b, c ∈ R there
holds

a(b+ c) = ab+ ac (16.7)

(a+ b)c = ac+ bc. (16.8)

Note that the ring multiplication is not required to be commutative
here, so there are left distributive (16.7) and a right distributive (16.8)
properties. Again, the identities (16.7) and (16.8) have nothing to do
with scaling as encountered with a vector space or a module.

When the algebraic structure of a ring is applied to R
n×n the empha-

sis is usually on the operation of multiplication of matrices. This may be
said to hold more generally as well. A ring is said to be a commutative
ring if the multiplication is commutative. An element in a ring for which a
multiplicative inverse exists is called invertible.

Exercise 16.10. Verify the following assertions concerning a ring R and the
ring R

n×n of n× n matrices in particular:

(a) 0a = 0 for every a ∈ R.

(b) If a ∈ R and there is some b ∈ R for which ab = 1, then the element
b is called a right inverse for a. Show that if a1 and a2 have right
inverses, then a1a2 has a right inverse.

(c) Show

R× = {a ∈ R : for some b, c ∈ R there holds ab = ca = 1}

is closed under multiplication.

(d) If a ∈ R× and b denotes a right inverse of a and c denotes a left inverse
of a, then b = c. Hint: Remember the proof that inverses in a group
are unique. In particular, if ab = ba = 1 and ab̃ = b̃a = 1, then
b = b(1) = b(ab̃).

(e) Conclude from part (d) that

R× = {a ∈ R : for some b ∈ R there holds ab = ba = 1},

and show R× is a multiplicative group. Hint: It still remains to show
that if ba = 1 for some a ∈ R×, then b ∈ R×.
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(f) The multiplicative inverses in a ring are unique.

The multiplicative group R× considered above is called the group of invert-
ible elements.

Exercise 16.11. Identify R× for the ring R = R
n×n.

Exercise 16.12. Verify the following assertions concerning a ring R and the
ring R

n×n of n× n matrices in particular:

(a) Z(R) = {a ∈ R : ab = ba for every b ∈ R} is a subring of R. This ring
is called the center of the ring R or the center of the monoid under
multiplication.

(b) R× ∩ Z(R) is a group (under multiplication).

(c) If R× ∩ Z(R) = Z(R), then R = {0}.

Exercise 16.13. Identify Z(R) and the subgroup R× ∩ Z(R) for the ring
R = R

n×n.

Exercise 16.14. In a general ring R if 0 = 1, then R = {0}.

Exercise 16.15. Give an example of a pair of 2× 2 matrices in R
2×2 which

do not commute under matrix multiplication.

16.3 Warm Up

The following exercises give a suggestion for a direction in understanding
something about Lie groups.

Exercise 16.16. Describe the following subsets of R3:

(a) {x = (x1, x2, x3) : x1x3 − x2 = 0}.

(b) R = {x = (x1, x2, x3) : x1x3 − x2 < 0}.

(c) L = {x = (x1, x2, x3) : x1x3 − x2 > 0}.
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Exercise 16.17. Describe the following subsets of R2:

(a) {x = (x2, x3) : (x1, x2, x3) ∈ ∂R, x1 < 0}.

(b) {x = (x2, x3) : (x1, x2, x3) ∈ ∂R, x1 = 0}.

(c) {x = (x2, x3) : (x1, x2, x3) ∈ ∂R, x1 > 0}.

Exercise 16.18. Given the set Ω ⊂ R
2 (described in each part below) find

an extended real valued function h : Ω → R ∪ {±∞} for which

{x = (x1, x2, x3) ∈ R : (x1, x2) ∈ Ω}

= {x = (x1, x2, x3) : (x1, x2) ∈ Ω, x3 > h(x1, x2)}.

A set of this form is called a supergraph.

(a) Ω = Ω− = {x = (x1, x2) : x1 < 0}.

(b) Ω = Ω0 = {x = (x1, x2) : x1 = 0}.

(c) Ω = Ω+ = {x = (x1, x2) : x1 > 0}.

Exercise 16.19. Let Ω = R
n and consider h :∈ C0(Ω). Show the following:

(a) A = {(x, xn+1) : x = (x1, x2, . . . , xn), xn+1 < h(x)} is an open connected
subset of Rn+1. In particular, the identity is a global chart function
making A a manifold. (For example, a smooth Riemannian manifold
with matrix assignment the constant identity matrix.)

(b) B = {(x, xn+1) : x = (x1, x2, . . . , xn), xn+1 > h(x)} is an open con-
nected subset of Rn+1.

(c) ∂A = ∂B = G where

G = {(x, xn+1) : x = (x1, x2, . . . , xn), xn+1 = h(x)}.

Exercise 16.20. Let Rn×n denote the set of n × n matrices a = (aij) with
real entries. Show the following:

(a) R
n×n is a group under (matrix) addition.

(b) R
n×n is a vector space over R.
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(c) R
n×n is a monoid under matrix multiplication.

(d) R
n×n is a ring under matrix addition and multiplication.

Exercise 16.21. (column bijection) Consider

ψc : R
n×n → R

n2

by
ψc(a) = (cT1 , c

T
2 , . . . , c

T
n )

where

a = (aij) = (c1 c2 . . . cn) and cj =











a1j
a2j
...
anj











denotes the j-th column of a = (aij) for j = 1, 2, . . . , n.

(a) Show ψc is a group isomorphism of additive groups.

(b) Show ψc is a vector space isomorphism of real vector spaces.

(c) Show ψc is a monoid isomorphism with respect to multiplication. (Write
down the multiplication formula for xy where x = (x1, x2, x3, x4) ∈ R

4

and y = (y1, y2, y3, y4) ∈ R
4. Can you generalize this to R

n2

?)

(d) Show ψc is a ring isomorphism.

Exercise 16.22. (row bijection) Consider

ψr : R
n×n → R

n2

by
ψr(a) = (r1, r2, . . . , rn)

where

a = (aij) =











c1
c2
...
cn











and ri = (ai1, ai2, · · · , ain)

denotes the i-th row of a = (aij) for i = 1, 2, . . . , n.
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(a) Show ψr is a group isomorphism of additive groups.

(b) Show ψr is a vector space isomorphism of real vector spaces.

(c) Show ψr is a monoid isomorphism with respect to multiplication. (Write
down the multiplication formula for xy where x = (x1, x2, x3, x4) ∈ R

4

and y = (y1, y2, y3, y4) ∈ R
4. Can you generalize this to R

n2

?)

(d) Show ψr is a ring isomorphism.

Exercise 16.23. (GLn(R)) The group of invertible elements R× considered
in Exercise 16.10 when R = R

n×n is the ring of real matrices is called GLn(R).
In this case, we have a characterization of the invertible matrices in terms of
a real valued function det : Rn×n → R called the determinant.

(a) Use one of the bijections ψc or ψr to induce a topology on R
n×n and

Show det is continuous.

(b) Conclude ψr(GLn(R)) and ψc(GLn(R)) are open subsets of Rn2

.

(c) What is the relation between ψr(GLn(R)) and ψc(GLn(R))?

(d) Show GL+
n (R) = {a ∈ R

n×n : det(a) > 0} is a group under (matrix)
multiplication.

(e) Is Rn×n\GLn(R) closed under matrix multiplication?

Exercise 16.24. (GL1(R))

(a) What is R1×1\GL1(R)?

(b) What is GL+

1 (R)?

(c) What is GL1(R)?

(d) GL+

1 (R) and GL1(R)\GL
+

1 (R) are homeomorphic one-dimensional man-
ifolds each of which admits a global chart. Give global charts p+

for GL+

1 (R) and p− for GL1(R)\GL
+

1 (R), and give a homeomorphism
ψ : GL+

1 (R) → GL1(R)\GL
+

1 (R).
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(e) Which of the following manifolds is a Lie group:

1. GL+

1 (R).

2. GL1(R)\GL
+

1 (R).

3. GL1(R).

4. R
1×1\GL1(R).

(f) R
n×n\GLn(R) is not a Lie group for n > 1. Why not?

Exercise 16.25. (GL2(R)) Express the following as sets in R
4:

(a) ψc(GL2(R)).

(b) ψc(GL
+

2 (R)).

(c) ψc(R
2×2\GL2(R)).

(d) ψr(GL2(R)).

(e) ψr(GL
+

2 (R)).

(f) ψr(R
2×2\GL2(R)).

Example: (a) ψc(GL2(R)) = {x = (x1, x2, x3, x4) : x1x4 − x2x3 6= 0}. The
next exercises are intended to give further insight in to the nature of these
particular sets.

Exercise 16.26. You may wish to review Exercises 16.16-16.19 before un-
dertaking this exercise.

(a) Let Ω− = {(x = (x1, x2, x3) : x1 < 0}. Find a function h ∈ C0(Ω−) for
which

{x = (x1, x2, x3, x4) ∈ ψr(GL
+

2 (R)) : (x1, x2, x3) ∈ Ω−}

= {x = (x1, x2, x3, x4) : (x1, x2, x3) ∈ Ω−, x4 > h(x1, x2, x3)}

and

{x = (x1, x2, x3, x4) ∈ ψr(R
2×2\GL2(R)) : (x1, x2, x3) ∈ Ω−}

= {x = (x1, x2, x3, x4) : (x1, x2, x3) ∈ Ω−, x4 = h(x1, x2, x3)}.
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(b) Let Ω+ = {(x = (x1, x2, x3) : x1 > 0}. Find a function h ∈ C0(Ω+) for
which

{x = (x1, x2, x3, x4) ∈ ψr(GL
+

2 (R)) : (x1, x2, x3) ∈ Ω+}

= {x = (x1, x2, x3, x4) : (x1, x2, x3) ∈ Ω+, x4 > h(x1, x2, x3)}

and

{x = (x1, x2, x3, x4) ∈ ψr(R
2×2\GL2(R)) : (x1, x2, x3) ∈ Ω+}

= {x = (x1, x2, x3, x4) : (x1, x2, x3) ∈ Ω+, x4 = h(x1, x2, x3)}.

(c) Let Ω0 = {(x = (x1, x2, x3) : x1 = 0}. Describe/make an illustration of

{x = (x1, x2, x3) ∈ Ω0 : (x1, x2, x3, x4) ∈ ∂ψk(GL2(R))}.

Hint: Make first an illustration of

{x = (x1, x2, x3, x4) ∈ ∂ψk(GL2(R)) : (x1, x2, x3) ∈ Ω0}.

Exercise 16.27. How many components does ψr(GL
+

2 (R)) have and what
are they? (Fully justify your answer.)

Exercise 16.28. Give a global chart for the manifold

ψr(R
2×2\GL2(R))

⋂

{x = (x1, x2, x3, x4) : (x1, x2, x3) ∈ Ω−}

where Ω− is defined in Exercise 16.27 part (a).

Exercise 16.29. Describe the set

Σ = ψr(R
2×2\GL2(R)) = ∂ψ2(GL2(R)).

Note ψr(GL2(R)) = R
4\Σ.

16.4 The matrix ring R
2×2

As mentioned above ψ : R2×2 → R
4 by ψ(aij) = (a11, a21, a12, a22) is a bijec-

tion, and by means of this bijection we can induce simple topological, vector
space, normed space, inner product space, and Riemannian manifold struc-
tures on R

2×2. In turn, the ring structure involving the matrix multiplication
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in R
2×2 may be induced on R

4. Of course, the flat Riemannian manifold R
4

is not a group with respect to the (induced matrix) multiplcation, but it is
a ring. Various subsets of R2×2 and by the bijective correspondence R

4 may
be considered. In particular, GL2(R) is a group, and it may be interesting to
understand the corresponding subset of R4. Within GL2(R) are the rotation
matrices

SL2(R) = {A ∈ GL2(R) : detA = 1}

and the larger set of orthogonal matrices

O2(R) = {A ∈ GL2(R) : | detA| = 1}.

These are also both (sub)groups under matrix multiplication. Other sub-
sets which are not groups (or subgroups) are the collection of symmetric
matrices

Symn(R) = {A ∈ R
2×2 : AT = A}

and the collection
O2(R)\SL2(R).

It may be interesting to consider for each of these sets the bijectively corre-
sponding subsets, and possibly submanifolds, of R4. Finally, consideration
of GL2(R) naturally suggests the consideration of R2×2\GL2(R) and the bi-
jectively corresponding set in R

4.

Exercise 16.30. Show

O2(R) = {A ∈ GLn(R) : A
T = A−1}.

16.5 S
1 as a group

I haven’t given a formal definition of a Lie group yet, but that should not stop
us from considering an example of one. We know S

1 is a C∞ submanifold
of R

2. Universal covering maps of S
1 are given by p : R → S

1 and
q : R → S

1 by

p(t) = (cos t, sin t) and q(t) = (cos(2πt), sin(2πt)) (16.9)

respectively. If P1, P2 ∈ S
1 and tj ∈ R with p(tj) = Pj for j = 1, 2, then

p(t1+ t2) determines a unique point in S
1. To see this, note that for j = 1, 2

we have

p(Pj) = {t ∈ R : (cos t, sin t) = Pj} = {tj + 2πk : k ∈ Z}.
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Thus, for each t̃j ∈ p−1(Pj), j = 1, 2 there is some kj with t̃j = tj + 2πkj.
Therefore,

p(t̃1 + t̃2) = (cos[t1 + t2 + 2π(k1 + k2)], sin[t1 + t2 + 2π(k1 + k2)]

= (cos(t1 + t2), sin(t1 + t2))

= p(t1 + t2).

. Thus, setting P1+P2 = p(t1+ t2) gives a well-defined operation of addition
on S

1 × S
1.

Exercise 16.31. Show the operation + : S1×S
1 → S

1 defined by P1+P2 =
p(t1 + t2) above is associative and makes S

1 a commutative group under
addition.

Exercise 16.32. Illustrate with a drawing the group operation + : S1×S
1 →

S
1 considered in Exercise 16.31

Exercise 16.33. Show that for each P0 ∈ S
1, the function f : S1 → S

1 by
f(P ) = P + P0 satisfies f ∈ C∞(S1 → S

1).

Exercise 16.34. Can you make sense of what it would mean for the function
f ∈ C∞(S1 → S

1) from the previous problem to satisfy f ∈ Cω(S1 → S
1).

Exercise 16.35. Use the universal covering map q : R → S
1 defined in

(16.9) above to define a group structure on S
1. Do you get the same group

addition or a different one?

16.6 SL2(R)

Exercise 16.36. Use the (restriction of the) canonical bijection ψ : R2×2 →
R

4 to obtain a universal covering map p : R → ψ(SL2(R). Show the image
p(R) is a circle (in a flat two-plane) in

S
3√
2
= {x = (x1, x2, x3, x4) : x

2

1 + x22 + x23 + x24 = 2}.

Exercise 16.37. Use (a) stereographic projection σ : S3√
2
→ R

3 to visualize

ψ(SL2(R)) and ψ(O2(R)\SL2(R)) in R
4.

Exercise 16.38. Use your visualization from Exercise 16.37 to illustrate with
a drawing the group operation of matrix multiplication in R

2×2 on SL2(R)
induced on ψ(SL2(R)) ⊂ R

4.

Exercise 16.39. Group action of SL2(R) on O2(R).


