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Though you may have hopefully been able to complete the exercises above
and start to get a feel for how Riemannian manifolds work, you may have
been left with the feeling that the form of the matrix assignment (gij) is
not so well motivated and the same applies to the definitions of Riemannian
length, angle, and area. These are all very good things to be worried about,
and we should give serious attention to providing some motivation for all
of these things. For the moment we set aside what should be some good
questions you are starting to formulate based on these observations about
motivation and turn to other directions of inquiry peculiar to Riemannian
manifolds as well as some more examples.

3.4 Linear structure(s) on B

Rn is a vector space by which we mean a linear space, i.e., a commutative
group under addition with a scaling R× Rn → Rn for which

α(βv) = (αβ)v for α, β ∈ R and v ∈ R
n,

(α + β)v = αv + βv for α, β ∈ R and v ∈ R
n,

α(v +w) = αv + βw for α ∈ R and v,w ∈ R
n,

1v = v for v ∈ R
n,

and

|v| =

√

√

√

√

n
∑

j=1

v2j

where v = (v1, v2, . . . , vn) ∈ Rn defines a norm. That is, Rn is a normed
linear space, i.e., a vector space. When we think of Rn as a Riemannian
manifold, with the identity as a global chart function, we associate with each
point x ∈ Rn a copy of Rn of displacements, or tangent vectors, from x. This
is called the tangent space at x and is denoted by TxR

n. It happens in this
case that there is a natural association of a vector v ∈ TxR

n with another
point in the manifold Rn by addtion, namely

x+ v.

More generally, given a vector v ∈ TxR
n and some t > 0, we can find another

vector
x+ tv ∈ R

n.
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We wish to extract certain aspects of this construction for application in a
general Riemannian manifold M . Let me briefly repeat this discussion of
the manifold M = Rn with some additional detail and clearly indicating
the roles of the two distinct copies of Rn. One copy is the manifold itself
M = Rn containing the point x and other points like x. The other copy
TxR

n = Rn is the vector space associated with a particular point x, and
TxR

n contains vectors v and other vectors like v. For each v ∈ TxR
n\{0},

there exists a unique geodesic ray, which in this case is a straight line. Every
point x + tv ∈M = Rn with t > 0 lies on this geodesic ray.

In a general Riemannian manifold M , some aspects of this description
may not be possible, but many aspects of the description can be recreated.
We will now begin the task of recreating the aspects which can be obtained
for the Riemannian manifold B.

We first associate a linear space (without a norm or means to measure
magnitudes) with each point P ∈ B. Let us call this linear space LPB.

This space is constructed as follows: For each function α : [a, b] → B with
a, b ∈ R and a < b for which

(i) α(t0) = P for some t0 ∈ (a, b) and

(ii) ξ ◦ α ∈ C1[a, b]

we say α ∈ cP1(B), that is α is a chart C1 path in B, with α(t0) = P .
If α ∈ cP1(B) satisfies α(t1) 6= α(t2) for a ≤ t1 < t2 ≤ b, then we write
α ∈ cI1(B). That is,

cI1(B) = {α ∈ cP1(B) : α(t1) 6= α(t2), t1 < t2}.

Now consider the collection of embedded paths

AP = {α ∈ cI1(B) : α(t0) = P}. (3.10)

Exercise 3.22. Show there exists a path in the set Ap defined in (3.10).
That is, show this collection of paths is nonempty.

On the set AP we define an equivalence relation as follows: Two paths
α1, α2 ∈ AP are equivalent, and we write α1 ∼ α2 if

(ξ ◦ α1)
′(t1) = (ξ ◦ α2)

′(t2) (3.11)

where αj(tj) = P for j = 1, 2.
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Exercise 3.23. Show the relation on AP defined by (3.11) is an equivalence
relation:

(a) α ∼ α for every α ∈ AP .

(b) α1 ∼ α2 implies α2 ∼ α1.

(c) If α1 ∼ α2 and α2 ∼ α3, then α1 ∼ α3.

Recall that whenever one has an equivalence relation on a set, then the set
is naturally partitioned into equivalence classes. Specifically, if α1, α2 ∈ AP ,
then there are precisely two possibilites for the sets

[α1] = {α ∈ AP : α ∼ α1} and [α2] = {α ∈ AP : α ∼ α2}, (3.12)

namely either

[α1] ∩ [α2] = φ or [α1] = [α2]. (3.13)

Exercise 3.24. Show the property (3.13) for the equivalence classes holds
when (3.12) holds.

We designate the collection of equivalence classes

LPB = {[α] : α ∈ AP}.

As a set, this will be the linear space assigned to the point P ∈ B. In order to
have a linear structure on LPB, we need operations of addition and scaling:

[α1] + [α2] = [α3] (3.14)

where (ξ ◦ α3)
′(t3) = (ξ ◦ α1)

′(t1) + (ξ ◦ α2)
′(t2) and, as may be expected,

α(tj) = P for j = 1, 2, 3. Given c ∈ R,

c[α1] = [α2] (3.15)

where (ξ ◦ α2)
′(t2) = c(ξ ◦ α1)

′(t1) and αj(tj) = P for j = 1, 2.

Exercise 3.25. Show the definitions of addition and scaling associated with
(3.14) and (3.15) respectively are well-defined and make LPB a linear space.
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The global chart function p : B1(0) → B and the global coordinate
function ξ = p−1 : B → B1(0) in particular played a prominent role in the
introduction of the linear structure constituted by the assignment

P 7→ LPB.

The paths α ∈ cP1(B) themselves, leading to the identification of the sets
AP and finally LPB, were differentiated from other paths using the notion
of regularity called “chart C1” which seemingly relies on the chart function.
Furthermore, each following step, from defining the equivalence classes to
defining the operations, relied directly on the use of the global chart.

On the other hand, like the open sets in the topology on B, the paths
themselves can be considered as objects having an identity only with respect
to the manifold B, and the same can be said concerning the sets Ap, LPB, and
the resulting sums [α1] + [α2] and scalings c[α]. In order to better appreciate
the extent to which B exerts its own identity in regard to the linear structure
constituted by the assignment

P 7→ LPB,

we consider in the next sections the proposition that while the particular
global chart function p : B1(0) → B was used to define the linear structure,
this particular chart function was not the only possibility. In particular while
the use of some chart function or functions is generally required to define a
linear structure, the particular chart functions used are, in a certain sense,
peripheral to the structure created.

3.5 More than one chart—an atlas

I’m going to briefly start again in a somewhat more general setting. This will
clean up some details that were glossed over above. We start with a Poincaré
manifold M . Recall that this means

(i) M is a topological space, and

(ii) Associated with each point P ∈ M there is at least one chart function
p : B2(0) → M defined on B2(0) ⊂ Rn for which the following hold:

(a) P ∈ p(B1(0)) ⊂ p(B1(0)) ⊂ p(B2(0)),
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(b) p : B2(0) → p(B2(0)) is a homeomorphism, and

(c) the restrictions

p∣
∣

B1(0)

: B1(0) → p(B1(0)) and

p∣
∣

p(B1(0))

: p(B1(0)) → (p(B1(0)))

are also homeomorphisms.

3.5.1 Atlas theory

The collection of chart functions {p}p∈Γ required to exist in the definition
have the property that the codomains p(B2(0)) for which p : B2(0) → Up is
a homeomorphism satisfy

M =
⋃

p∈Γ

p(B2(0)). (3.16)

That is to say {p(B2(0))}p∈Γ is an open cover ofM . Consequently, the pairs

A0 = {(B2(0),p)}p∈Γ

provide an example of what is called a covering atlas. Clearly this particular
atlas and these particular chart functions are somewhat special.12 Anytime,
however, we have a collection of open domain sets Up ⊂ Rn along with home-
omorphisms p : Up → p(Up) ⊂M for p in some indexing set Γ satisfying

M =
⋃

p∈Γ

p(Up) (3.17)

12This is not to say the atlas A0 is unique in any particular sense. We can call such
an atlas in which each chart function p : B2(0) → M illustrates the locally Euclidean
structure of M a topological base atlas, but there could be many different such atlases.
We always build upon some topological base atlas. It doesn’t matter which one you start
with, and (somewhat paradoxically) the chart functions in other atlases may not include
any element in the topological base atlas. As a related note, one can start with a collection
of chart functions which are not homeomorphisms but simply bijections p : B2(0) → M

into a (structureless) set M with images covering M as in (3.16). Then one can construct
a topology on M using the bijections. We have done this in the case where there exists a
global chart. If there is no global chart, construction of the topology is more complicated.
This is one reason we started again with a topology in place.



94 CHAPTER 3. STARTING WITH EXAMPLES

we say
A = {(Up,p)}p∈Γ

is a covering atlas or just an atlas. Of course, in principle, we could call
any collection of (chart, chart function) pairs an atlas, but in practice, we
almost always require the covering atlas property (3.17).

Exercise 3.26. Show that whenever p : Up → p(Up) and q : Uq → q(Uq)
are chart functions (homeomorphisms) for a Poincaré manifold and

W = p(Up) ∩ q(Uq) 6= φ

then

ψ = η ◦ p∣
∣

ξ(W )

: ξ(W ) → η(W ) and

φ = ψ−1 = ξ ◦ q∣
∣

η(W )

: η(W ) → ξ(W )

are homeomorphisms where ξ = p−1 and η = q−1 are the associated coordi-
nate functions.

The property described in Exercise 3.26 is called an overlap property,
and with the starting point we have chosen this particular overlap property
comes for “free,” that is the property can be shown to hold as an exercise.
Very often an overlap property is something that is assumed instead (as we
shall soon see).

A covering atlas A∗ is said to be a maximal atlas for the Poincaré
manifold M if every homeomorphism p : U → p(U) with domain an open
subset of Rn and p(U) ⊂ M is in A∗. In fact, there is clearly a unique
maximal atlas:

A∗ =

{

(U,p) ∈ T ×

(

⋃

V ∈T

C0(V →M)

)

:

p : U → p(U) is a homeomorphism

}

where T denotes the (usual) topology on Rn. Generally speaking A∗ contains
every chart function we will ever want to consider; it is a really big atlas. It
will be important, however, to consider some specified subatlases of A∗. The
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subatlases of interest are usually specified by some kind of overlap condition.
For example, say we can find an atlas A ⊂ A∗ for which

ψ = η ◦ p∣
∣

ξ(W )

: ξ(W ) → η(W ) and (3.18)

φ = ψ−1 = ξ ◦ q∣
∣

η(W )

: η(W ) → ξ(W ) (3.19)

are Lipschitz homeomorphisms whenever p : Up → p(Up) and q : Uq →
q(Uq) are chart functions (homeomorphisms) with

(Up,p), (Uq,q) ∈ A,

W = p(Up)∩q(Uq) 6= φ, and ξ = p−1 and η = q−1 the associated coordinate
functions as usual. Then we say A is a Lipschitz atlas and/or A gives M
a Lipschitz structure. Here we assume A is again a covering atlas, so A
in this case is a covering Lipschitz atlas. Let us denote one such atlas by
ALip. Then we can consider the maximal atlas

ALip
∗ = ALip

⋃

{

(Uq,q) ∈ A∗ : the maps in (3.18) and (3.19)

are Lipschitz homomeomorphisms whenever (Up,p) ∈ ALip
}

.

The reference to (3.18) and (3.19) in the definition of the maximal atlas
ALip

∗ assumes W = p(Up) ∩ q(Uq) 6= φ with ξ = p−1 and η = q−1 the
associated coordinate functions as usual. Note the construction of ALip

∗ is
quite different from the construction of the unique maximal topological atlas
A∗. In particulr, the overlap condition appears as an important assumption
rather than a necessary consequence.

Exercise 3.27. Show that if

(i) (Up,p), (Uq,q) ∈ ALip
∗ , and

(ii) W = p(Up) ∩ q(Uq) 6= φ,

then the maps in (3.18) and (3.19) are Lipschitz homomeomorphisms where
ξ = p−1 and η = q−1 are the associated coordinate functions as usual.
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Exercise 3.28. Show that if A is a Lipschitz atlas satisfying

(i) ALip ⊂ A,

(ii) If (Up,p) ∈ ALip, (Uq,q) ∈ A with

(a) W = p(Up) ∩ q(Uq) 6= φ, and

(b) ξ = p−1 and η = q−1 are the associated coordinate functions as
usual,

then the maps in (3.18) and (3.19) are Lipschitz homomeomorphisms,

then A ⊂ ALip
∗ .

Two interesting and important questions arise immediately:

1. Does there exist a Lipschitz (covering) atlas?

2. Assuming there exist two Lipschitz atlases (or atlantes) ALip and A in
A∗, is the “unique” maximal atlas ALip

∗ containing ALip and discussed
in Exercises 3.27 and 3.28 the same as the “unique” maximal atlas
obtained by applying the same discussion to A? (Hint: The answer is
“no” (!).)

I suggest we set these questions aside for a moment and continue our discus-
sion of special subatlantes.

A C1 atlas is defined in the same way a Lipschitz atlas is defined, except
the overlap changes of variables are required to be C1 instead of Lipschitz.

Exercise 3.29. Adapt the discussion above concerning Lipschitz atlantes to
C1 atlantes, including versions of Exercises 3.26, 3.27, and 3.28.

If we have a C1 atlas A = A1 and the corresponding maximal atlas A1
∗,

then we are in a position to discuss chart C1 regularity for paths into and
real valued functions on M . This allows the construction of a linear space

LPM = {[α] : α ∈ cI1(M), α(t0) = P}

with elements equivalence classes of chart C1 paths as discussed for B above.
I suggest we call these particular elements of this linear space filaments.
This name stands in contrast to vectors, which would be the elements of
a vector space. A little reflection suggests the utility of having a general
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name distinguishing elements of a general linear space from the elements
of a vector space in the special case when the linear space has a norm (or
inner product). It is customary to call the elements of a normed linear space
(i.e., vector space) vectors. Perhaps the term filament can be used similarly:
An element of a linear space is a filament, and a linear space may also be
referred to as a filament space if we wish to emphasize the absence of a
norm.

Notice there was nothing particularly special about the use of the global
chart we used for B. The basic situation is illustrated in Figure 3.4. If we

Figure 3.4: Another chart for B, tangent spaces in the charts, and a linear
space at a point P ∈ B

have a global chart, say p : U → M (for example p : U = B1(0) → B),
then every other chart q : V → M defined on an open set V ⊂ Rn will have
W = p(V ) ⊂ M = p(U). In partiucular, W = p(U)∩q(V ) is an open subset
of M and the restrictions

p∣
∣

ξ(W )

∈ C0(ξ(W ) →M), and q∣
∣

η(W )

∈ C0(η(W ) →M)
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are well defined as well as the change of coordinate functions

ψ = η ◦ p∣
∣

ξ(W )

: ξ(W ) → η(W ) and

φ = ψ−1 = ξ ◦ q∣
∣

η(W )

: η(W ) → ξ(W ).

All overlap conditions apply to changes of coordinates.
Even in this case when one has a global chart, it is natural to consider

other charts in an atlas, and if other charts and the associated changes of co-
ordinates are considered, then the overlap conditions are natural to consider
as well and, in cases of higher regularity, necessary to consider.

Exercise 3.30. Say you have a global chart U and a global chart function
p : U →M . You then have the unique maximal atlas

A∗ =

{

(V,q) ∈ T ×

(

⋃

A∈T

C0(A→ M)

)

:

q : V → p(V ) is a homeomorphism

}

where T denotes the (usual) topology on Rn.

(a) Find (i.e., show the existence of by finding) a Lipschitz subatlas, i.e., a
Lipschitz covering atlas,

ALip ⊂ A∗.

(b) A (covering) subatlas A ⊂ A∗ is said to be a C1 atlas if

ψ = η ◦ p∣
∣

ξ(W )

: ξ(W ) → η(W ) and (3.20)

φ = ψ−1 = ξ ◦ q∣
∣

η(W )

: η(W ) → ξ(W ) (3.21)

satisfy

ψ ∈ C1(ξ(W ) → η(W )) and φ ∈ C1(η(W ) → ξ(W ))

for every (V,q) ∈ A where ξ = p−1, η = q−1, and W = p(U) ∩ p(V )
as usual. Find a C1 atlas.

(c) Define and find for each k ∈ N ∪ {∞} (in this special case where there
exists a global chart function p : U →M) a Ck atlas for M .
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Filaments determined by a global chart

Given the context of Exercise 3.30, we need a C1 atlas13 to consider LPM

for each P ∈ M . Specifically, given a C1 atlas A1 with (U,p) ∈ A, we can
construct the maximal C1 subatlas

A1
∗ = A1

⋃

{

(V,q) ∈ A∗ : the maps in (3.20) and (3.21) satisfy

ψ ∈ C1(ξ(W ) → η(W )) and φ ∈ C1(η(W ) → ξ(W ))
}

.

Given α1 ∈ cI1(M) with P ∈ α1(I), we can define the equivalence class
[α1] ∈ LPM by

[α1] =
{

α ∈ cI1(M) : (ξ ◦ α)′(α−1(P )) = (ξ ◦ α1)
′(α−1

1 (P ))
}

,

but we would like to make sure that if we happen to use a different chart
(V,q) ∈ A1

∗ with P ∈ q(V ), then
{

α ∈ cI1(M) : (η ◦ α)′(α−1(P )) = (η ◦ α1)
′(α−1

1 (P ))
}

defines the same equivalence class. The key to this verification is a formula
for (η ◦ α)′(α−1(P )) in terms of (ξ ◦ α)′(α−1(P )). Such a formula can be
obtained by the chain rule applied to

η ◦ α = η ◦ p ◦ ξ ◦ α

as long as the change of variables ψ = η ◦ p∣
∣

ξ(W )

satisfies ψ ∈ C1. This

condition should have been part of the definition of a C1 atlas discussed in
the solution of Exercise 3.29. Thus, by the chain rule

(η ◦ α)′ = Dψ(ξ ◦ α) (ξ ◦ α)′ (3.22)

and

(η ◦ α)′(α−1(P )) = Dψ(ξ ◦ α(α−1(P ))) (ξ ◦ α)′(α−1(P ))) (3.23)

in particular where

Dψ =

(

∂ψi

∂xj

)

(3.24)

is the n× n matrix of partial derivatives of ψ.

13You should know one.
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Notational abuse of matrix multiplication in calculus

This is perhaps a convenient place to pause and point out a small abuse of
notation in which we have indulged before and perhaps went unnoticed. We
have generally considered vectors in Rn as row vectors with

e1 = (1, 0, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0),

...

en = (0, 0, 0, . . . , 1)

v = (v1, v2, . . . , vn)

α′ = (α′
1, α

′
2, . . . , α

′
n), and

Df = (De1f,De2f, . . . , Den
f), etc.

where α = (α1, α2, . . . , αn) ∈ P1(Rn) is a parameterized path in Rn and
f ∈ C1(U) is a real valued function defined on an open set U ⊂ Rn. Perhaps
the primary reason for the consideration of row vectors is typographical so
that repeated use of expansive symbolic expressions like

v =











v1
v2
...
vn











can be avoided, especially in normal paragraphs of text. Thus one avoids










v1
v2
...
vn











or having to always write vT in inline text. On the other hand,

the convention according to which the gradient vector Df is the row vector
of partial derivatives is entirely compatible with the expression for the total
derivative in (3.24) in which each row is the gradient of the component func-
tion ψi. Perhaps the natural convention, were typographical matters of no
concern, would be to have vectors in Rn be column vectors, but then Df for
a real valued function f ∈ C1(U) would take values in the vector space

R
n
r = {vT : v ∈ R

n}
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consisting of row vectors in contrast to the space Rn = Rn
c of column vectors

with Rn
c and Rn

r being vector space isomorphic by the transpose, and of course
with each having its own inner product.

The notational abuse comes when a professed row vector is multiplied by
a matrix on the left as in (3.22), (3.23), or the formula

〈(gij)v,w〉Rn

which has been used above in the context of a matrix assignment (gij) = (gij),
for example in the matrix assignment for the example Riemannian manifold
B. Technically, one should use the transpose operation according to which

vT =











v1
v2
...
vn











is a column vector and (gij)
T = (gji). Thus, more or less proper ways to

write some of the matrix multiplications mentioned are

[(η ◦ α)′]T = Dψ(ξ ◦ α) [(ξ ◦ α)′]T ,

(η ◦ α)′ = [ Dψ(ξ ◦ α) [(ξ ◦ α)′]T ]T ,

[(η ◦ α)′(α−1(P ))]T = Dψ(ξ ◦ α(α−1(P ))) [(ξ ◦ α)′(α−1(P )))]T ,

〈[(gij)v
T ]T ,v〉Rn,

and

v(gij)v
T .

In most instances, it is just too much trouble to sort all these questions out
carefully and include transposes in the appropriate places, but it is perhaps
good to be able to do so in certain instances.

Differential map in calculus

Referring back to Figure 3.4, the value on the right in (3.23) is the value of
the differential

dψξ(P ) : Tξ(P )R
2 → Tη(P )R

2
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on the tangent vector (ξ ◦ α)′(α−1(P )). This is a good time to note some
fundamental differences between (3.22) and (3.23). The formula (3.22) is an
expression of the chain rule which holds at all points along a particular path
α. The evaluation (3.23) plays a special role and has a special name: This is
called a coordinate transformation rule at a point which tells how the
filament [α] transforms under a change of coordinates. Specifically, we can
say (ξ ◦ α)′(α−1(P )) is the (or an) “expression” for [α] in local coordinates.
In a certain sense (ξ ◦ α)′(α−1(P )) is a “representative” of [α].

Exercise 3.31. Show

[α] 7→ (ξ ◦ α)′(α−1(P ))

defines a linear space isomorphism from LPM to Tξ(P )R
n.

Notice that if α1 is a different path in [α] then ξ ◦ α1 will be a different
path in U . Consequently, the formulas

(η ◦ α)′ = Dψ(ξ ◦ α) (ξ ◦ α)′ and (η ◦ α1)
′ = Dψ(ξ ◦ α1) (ξ ◦ α1)

′

are both correct espressions of the chain rule, but they are different. The
evaulations associated with (3.23)

(η ◦ α)′(α−1(P )) = Dψ(ξ ◦ α(α−1(P ))) (ξ ◦ α)′(α−1(P )))

and

(η ◦ α1)
′(α−1

1 (P )) = Dψ(ξ ◦ α1(α
−1
1 (P ))) (ξ ◦ α1)

′(α−1
1 (P )))

however are identical. Also, the expressions

(η ◦ α)′(α−1(P )) and (η ◦ α1)
′(α−1

1 (P ))

are identical; they are the same expressions of [α] in the coordinate η though
the paths η ◦ α and η ◦ α1 may be different. This is what the definition of
the equivalence relation used to define LPM tells us.

Finally, the transformation rule (3.23) expresses how the expression for
[α] in the coordinate ξ “transforms” when [α] is expressed in a different
coordinate η. This concept of a coordinate transformation rule at a
point is very central to the realization of the matrix assignment (gij) as an
independent entity (called the Riemannian metric tensor) on B as discussed
below.
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To finish this section on atlases let me attempt a summary/review of some
of the linear structures we have discussed in the general setting. If you have
a C1 atlas A1 on a Poincaré manifold M , then you are assuming changes of
coordinates are C1 diffeomorphisms. Within the maximal topological base
atlas A∗ there is a unique maximal C1 atlas containing A1. This atlas is
denoted by A1

∗. In this case, we can discuss the linear space of filaments LPM

consisting of equivalence classes [α] of paths α ∈ cP1(M). The filaments are
added and scaled as follows:

[α] + [β] = [γ]

where
(ξ ◦ γ)′(γ−1(P )) = (ξ ◦ α)′(α−1(P )) + (ξ ◦ β)′(β−1(P ))

and
c[α] = [σ]

where
(ξ ◦ σ)′(σ−1(P )) = c(ξ ◦ α)′(α−1(P )).

It was not emphasized above, but when one has a C1 atlas A1, the linear
space cC1(M) consisting of real valued functions f :M → R with coordinate
expressions f ◦ p : U → R satisfying f ◦ p ∈ C1(U) is also part of the linear
structure on M .

Exercise 3.32. Let f :M → R where M is a Poincaré manifold considered
with respect to a C1 structure determined by a C1 atlas A1 ⊂ A∗. Show the
following: If for each P ∈ M , there exists some (U,p) ∈ A1

∗ with P ∈ p(U)
and for which f ◦ p ∈ C1(U), then f ◦ q ∈ C1(V ) for each (V,q) ∈ A1

∗.

In a Cr atlas A2, the changes of coordinates are required to be C2 dif-
feomorphisms. Associated with each C2 atlas A2, there is a unique maximal
C2 atlas A2

∗. If the manifold M has a C2 structure (induced by a C2 atlas
A2), then it also has a C1 structure induced by A2.

Exercise 3.33. Let H1
∗ denote the unique maximal C1 atlas containing a

given C2 atlas A2. Let A1 ⊂ H1
∗ be a C1 atlas (for the same manifold).

Then H1
∗ = A1

∗. (True of false?)

For any k ∈ N a Ck atlas Ak is required to have changes of coordinates
which are Ck diffeomorphisms. Every such atlas Ak determines a unique
maximal Ck atlas Ak

∗ with Ak ⊂ Ak
∗. Each such manifold has a well-defined

linear structure.
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Exercise 3.34. Let Ak be Ck atlas on a Poincaré manifold M for some
k ∈ N. Also, let A1 be a C1 atlas on the same Poincaré manifold. Consider
the following collections of embedded paths:
{

α ∈ I0(M) : ξ ◦ α∣
∣

α−1(p(U))

∈ C1(α−1(p(U)) → U) for some (U,p) ∈ Ak

}

and
{

α ∈ I0(M) : ξ ◦ α∣
∣

α−1(p(U))

∈ C1(α−1(p(U)) → U) for some (U,p) ∈ A1

}

.

(a) Are these sets the same, or can they be different?

(b) What does this tell you about the definition of cP1(M)?

In a C∞ atlas A∞, changes of coordinates are required to be C∞ diffeo-
morphisms. Every C∞ atlas A∞ determines a unique maximal C∞ atlas A∞

∗ .

Exercise 3.35. Let A∞ be C∞ atlas on a Poincaré manifold M , and let P
be a point in M . Identify the following sets:

A =

{

α ∈ I0(M) :

ξ ◦ α∣
∣

α−1(p(U))

∈ C∞(α−1(p(U)) → U) for some (U,p) ∈ A∞

}

,

B =
{

α ∈ A : α−1({P}) 6= φ
}

, and

C = {[α] : α ∈ B}.

Notice that if M has a Ck atlas Ak with corresponding maximal atlas
Ak

∗ for some k ∈ N ∪ {∞}, then for every m ∈ N with m < k, there is a
unique maximal Cm atlas Am

∗ ⊂ A∗ satisfying Ak ⊂ Am
∗ . Like the question

mentioned above concerning the existence of a Lipschitz atlas in A∗, there is
a sequence of interesting questions having the form(s)

1. Given a Poincaré manifold M and some k ∈ N∪ {∞}, does there exist
a Ck atlas Ak ⊂ A∗?

2. Given a Ck atlas Ak
∗ ⊂ A∗ on a Poincaré manifold M for some k ∈ N

and given some m ∈ N∪ {∞} with m > k, does there exist a Cm atlas
Am ⊂ Ak

∗?
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Figure 3.5: Filaments at a point P in a manifold M with C1 (linear) struc-
ture.

Largely to avoid these interesting questions of existence, we assume for the
moment (until further notice) that we have a C∞ atlas A∞

∗ ⊂ A∗ on a
Poincaré manifold M as illustrated in Figure 3.5.

3.5.2 Linear spaces of functions

Collections of real valued functions onM with specified chart regularity, when
considered as linear spaces, may also be considered to be part of the linear
structure on a manifold M . These spaces typically also have the structure of
a ring. Examples include

cLip(M), cC1(M), cC2(M), . . . , cCk(M), . . . , cC∞(M).
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In many texts the last ring is often denoted F (M) and is called the ring of
smooth functions on M . We will stick to the unified notation cC∞(M) for
this space, and the others, but we note that we consider these spaces not
only as linear spaces with the usual operations determined by

(f + g)(P ) = f(P ) + g(P ) and (cf)(P ) = cf(P )

where f, g ∈ cC∞(M) and c ∈ R but they are also algebraic rings with

(fg)(P ) = f(P )g(P ).

3.5.3 Filament fields

A function ℓ : M →
⋃

P∈M LPM satisfying ℓ(P ) ∈ LPM is called a fila-
ment field. For a manifold with a C∞ atlas A∞

∗ , we can consider the chart
regularity of a filament field in the “usual way.” Here are the details: For
k ∈ N∪{∞} it is convenient to denote the Ck vector fields on an open subset
U in Rn by V k(U). That is,

V
k(U) =







v = (v1, v2, . . . , vn) ∈

(

⋃

x∈U

TxR
n

)U

:

v(x) ∈ TxR
n and vj ∈ Ck(U), j = 1, 2, . . . , n







.

In this way, we know what it means for a vector field v : U →
⋃

x∈U TxR
n,

which assigns to each x ∈ U ⊂ Rn an element of the tangent space at x, to
be smooth.

We can say a filament field is chart C∞ if the field induced on a coordinate
chart is actually C∞. Specifically, if

ℓ ∈

(

⋃

P∈M

LPM

)M

is a filament field, then

ℓ ∈ cC∞ (M → ℓ(M))
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if for each (U,p) ∈ A∞
∗ there holds v ∈ V ∞(U) where

v(x) = (ξ ◦ α)′(α−1(p(x)))

where α ∈ ℓ(p(x)).

Exercise 3.36. Given a filament field

ℓ ∈

(

⋃

P∈M

LPM

)M

and α1, α2 ∈ ℓ(p(x)) for some x ∈ U and (U,p) ∈ A∞
∗ , show

(ξ ◦ α1)
′(α−1

1 (p(x))) = (ξ ◦ α2)
′(α−1

2 (p(x)))

where ξ = p−1 is the coordinate function associated with (U,p) as usual.

The collection of all cC∞ filament fields on a given manifold M with
smooth structure A∞

∗ is denoted by

X
∞(M)

or just X (M). That is,

X
∞(M) =







ℓ ∈

(

⋃

P∈M

LPM

)M

: ℓ(P ) ∈ LPM,

v ∈ V(U), (U,p) ∈ A∞
∗ ;

v(x) = (ξ ◦ α)′(α−1(p(x))), α ∈ ℓ(p(x))







Exercise 3.37. If ℓ : M →
⋃

P∈M LPM is a filament field and v ∈ V ∞(U)
where

v(x) = (ξ ◦ α)′(α−1(p(x))), α ∈ ℓ(p(x))

for (U,p) in some covering atlas A ⊂ A∞
∗ , then ℓ ∈ X (M).

Exercise 3.38. Consider A : Tξ(P )R
n → LPM by

A(v) = [α],

where α : (−ǫ, ǫ) → M by α(t) = p(ξ(P ) + tv), (U,p) ∈ A∞
∗ , and ǫ > 0

is some positive number for which ξ(P ) + tv ∈ U for |t| < ǫ. Show A is a
linear space isomorphism. In particular, LPM is a linear space of dimension
n (linear space) isomorphic to Rn.
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Exercise 3.39. If ℓ : M →
⋃

P∈M LPM is a filament field, can you find a
natural topology on ℓ(M) so C0(M → ℓ(M)) makes sense directly?

3.5.4 The space X (M)

The collection X (M) of chart C∞ filament fields introduced above admits
the structure of a linear space over R with operations

(ℓ1 + ℓ2)(P ) = ℓ1(P ) + ℓ2(P )

for ℓ1, ℓ2 ∈ X (M) and

(cℓ)(P ) = c ℓ(P )

for ℓ ∈ X (M) and c ∈ R. Notice the addition and scaling on the right take
place in LPM which is a linear space.

There is another scaling cC∞(M)× X (M) → X (M) by

(fℓ)(P ) = f(P ) ℓ(P )

according to which

(fg)ℓ = f(gℓ),

(f + g)ℓ = fℓ+ gℓ,

f(ℓ1 + ℓ2) = fℓ1 + fℓ2,

and

1ℓ = ℓ (3.25)

for f, g ∈ cC∞(M) and ℓ, ℓ1, ℓ2 ∈ X (M) where 1 in (3.25) is the multiplica-
tive identity in the ring cC∞(M). This scaling makes the additive abelian
group of filament fields X (M) a module over the ring cC∞(M).

In summary, the collection X (M) of filament fields

ℓ ∈ cC∞

(

M → ℓ(M) ⊂
⋃

P∈M

LPM

)

is a linear space over the field R and a module over the ring cC∞(M).
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3.5.5 Linear Leibnizian functionals

An alternative assignment of a linear space to each point P in a Poincaré
manifold with a specified C∞ atlas A∞

∗ ⊂ A∗ may be obtained as follows:
Recall the linear space cC∞(M) which is also an algebraic ring and is some-
times denoted F (M). Denote by L(cC∞(M)) the collection of all linear
functionals v : cC∞(M) → R. More generally, we can denote by L(V )
the collection of all linear functionals defined on a linear space V and by
L(V → W ) the collection of all linear operators L : V → W from a lin-
ear space V to any other linear space W over the same field. Generally, an
element L ∈ L(V →W ) is required to satisfy

L(av + bw) = aLv + bLw

for v, w ∈ V and a, b scalars in the field. The space L(V → W ) coincides
with i(V → W ) when V and W have topologies and V is finite dimensional.
In this application we have no topology on cC∞(M) at this point, so we
use L(cC∞(M)). The space L(V ) = L(V → R) is also sometimes called
the algebraic dual of the linear space V while the collection of continuous
linear functionals i(V ) = i(V → R) is called the analytic dual or simply
the dual space when V has a topology and is also denoted simply by V ∗.

We assign to each P ∈M the linear space

LLPM = {v ∈ L(cC∞(M)) : v[fg] = v[f ]g(p) + f(p)v[g], f, g ∈ cC∞(M)}.

A functional v : cC∞(M) → R satisfying

v[fg] = v[f ]g(p) + f(p)v[g] for f, g ∈ cC∞(M) (3.26)

is said to be Leibnizian at P ∈M . Thus, LLPM is the collection of linear
Leibnizian functionals on cC∞(M). These functions/functionals are often
referred to as “differential operators” or “directional derivative operators,”
but they are not really differential operators. The Leibnizian property gives
these functionals one of the formal properties of a directional derivative, but
no derivatives are involved (or harmed) in the construction of LLPM .

What LLPM does provide is a linear space which can be associated to
each point P ∈ M . Moreover, this linear space is finite dimensional and
isomorphic as a linear space to LPM (and hence to Rn).
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Exercise 3.40. Consider V : Tξ(P )R
n → LLPM by

V (v) = v,

where v : cC∞(M) → R by v[f ] = Dv(f ◦ p)(ξ(P )) where (U,p) ∈ A∞
∗ , and

Dv(f ◦ p)(ξ(P )) = lim
tց0

f ◦ p(ξ(P ) + tv)− f ◦ p(ξ(P ))

t|v|
.

Show V is a linear space isomorphism. In particular, LLPM is a linear space
of dimension n (linear space) isomorphic to Rn.

Like LPM , the linear space LLPM has an identity depending on, but
essentially independent from, coordinate expressions.

Exercise 3.41. Describe LLxR
n.

3.5.6 Linear Leibnizian operators

It is also possible to consider a “field” of linear Leibnizian functionals. Gen-
erally, such a field can be expressed as a function

w :M →
⋃

P∈M

LLPM with w(P ) = wP ∈ LLPM.

In this case w(P ) is usually written wP : cC∞(M) → R. Again, the chart
regularity of a linear Leiznizian functional field w can be expressed in terms
of the smooth vector fields V∞(U) where (U,p) ∈ A∞

∗ .

Exercise 3.42. Given a field of linear Leibnizian functionals

w :M →
⋃

P∈M

LLPM

and a local chart U with (U,p) ∈ A∞
∗ , describe the vector field v induced on

U and define the condition

w ∈ cC∞(M → w(M)).

Hint: Review the definition of ℓ ∈ cC∞(M → ℓ(M)) given above for a
filament field ℓ.
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Since wP [f ] ∈ R for each f ∈ cC∞(M) and each P ∈ M , there is an al-
ternative formulation for linear Leibnizian functional fields in terms of linear
Leibnizian operators.

The notation is slightly abused in the following description relative to the
description of elements of v ∈ LLPM given above, so one should consider it
carefully. In particular, I am going to denote a linear Leibnizian operator

v : cC∞(M) → R
M

using the same symbol v. Given this usage, the element v ∈ LLPM consid-
ered in the previous section should/may be denoted vP . Here are the details:
A linear Leibnizian operator14 is a function

v : cC∞(M) → R
M

satisfying

(i) v[af + bg] = av[f ] + bv[g] for a, b ∈ R and f, g ∈ cC∞(M), and

(ii) v[fg] = v[f ]g + fv[g] for f, g ∈ cC∞(M).

Note that RM is a linear space, so the linearity condition (i) makes sense,
that is, (i) requires v ∈ L(cC∞(M) → RM), that is, v is a linear operator.
Also, cC∞(M) is a ring, so the generalized Leibnizian property (ii) makes
good sense. What this definition does not include is a condition of chart
regularity.

Exercise 3.43. Show a linear Leibnizian operator v : cC∞(M) → RM de-
fines a unique linear Leibnizian functional field

w :M →
⋃

P∈M

LLPM

by w(P )[f ] = v[f ](P ). Show furthermore that the condition w ∈ cC∞(M →
w(M)) defined in Exercise 3.42 above is equivalent to the condition

v(cC∞(M)) ⊂ cC∞(M).

Thus, a smooth (chart C∞) linear Leibnizian operator is simply an oper-
ator v : cC∞(M) → cC∞(M) satisfying conditions (i) (linearity) and (ii)
(Leibnizian) given above.

14which is equivalent to a field of linear Leibnizian functionals.
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3.5.7 Riemannian metric tensor

Having reached the point where we have the linear/filament space LPM

associated with each point P in a manifold with a maximal C∞ atlas A∞
∗ ⊂

A∗ (or even a maximal C1 atlas A1
∗ ⊂ A∗), it is not too much trouble to

explain how the Riemannian metric tensor is realized on M . The objective
is to define an inner product

〈 · , · 〉P : LP × LP → R (3.27)

on each linear space LPM . There are basically two difficulties involved.
First we need to explain clearly the relation of such an inner product with
the functions/matrix assignment (gij) in local coordinates, and in particular
explain how the inner product is defined in a way that is essentially indepen-
dent of the particular matrix assignment arising in a chart. If we understand
well that the elements [α] of LPM have an independent identity, then this
is relatively straightforward if the values of the inner product as suggested
in (3.27) are well-defined. The second difficulty is to explain clearly what
kind of regularity should be required of the inner product with respect to the
variable/point P ∈ M and the consequences for regularity implied by the
assignment. This is somewhat similar to the discussion of the (chart) regu-
larity of filament fields and fields of linear Leibnizian functionals (or linear
Leibnizian operators) but is, on the one hand, somewhat more complicated
and, on the other hand, somewhat more significant because the assignment,
if it is done correctly, actually allows a reasonable notion of actual derivatives
and, hence, calculus directly on the resulting Riemannian manifold M .

There is an obvious formula. At least this formula should be obvious at
this point, so perhaps I will start by writing it down:

〈[α], [β]〉P = 〈(gij)(ξ ◦ α)
′(α−1(P )), (ξ ◦ β)′(β−1(P ))〉Rn (3.28)

where [α], [β] ∈ LPM and (U,p) ∈ A1
∗ as usual. Of course this is a formula

in local coordinates, and the natural question might be:

Where do the (gij) come from?

Hopefully we will give a satisfying answer to this question.
It turns out that it may be natural to take a somewhat more general

starting point as well. A two form at P is a bilinear function

b : LPM ×LPM → R,
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and the innner product suggested by the formula (3.28) above is an example
of such a bilinear function. That is,

b(c1[α] + c1[β], [γ]) = c1b([α], [γ]) + c2b([β], [γ])

and
b([γ], c1[α] + c1[β]) = c1b([γ], [α]) + c2b([γ], [β])

for c1, c2 ∈ R and [α], [β], [γ] ∈ LPM . We call the collection of all bilinear
functions (or two forms) at a point P ∈ M the two tensors at a point P
(or sometimes the zero-two tensors at P for reasons that will be explained
later) and denote this collection by

T
2
P (LPM).

Exercise 3.44. What is the relation between T 2
P (LPM) and the linear space

L(LPM × LPM) of linear functionals on LPM ×LPM?

Exercise 3.45. Show T 2
P (LPM) is a linear space with (b1 + b2)([α], [β]) =

b1([α], [β])+b2([α], [β]) and (cb)([α], [β]) = cb([α], [β]) for b1, b2, b ∈ T 2
P (LPM)

and c ∈ R as usual.

Symmetric and positive definite two forms

Recall that an n × n matrix (gij) = (gij(x)) defined at a point x ∈ Rn is
symmetric if gij = gji for i, j = 1, 2, . . . , n. Also, (gij) is positive definite
if

〈(gij)v,v〉Rn ≥ 0 for v ∈ R
n

with equality only if v = 0.
For a bilinear form, i.e., a two form, at P ∈M ,

1. b : LPM × LPM → R is symmetric if

b([α], [β]) = b([β], [α]) for [α], [β] ∈ LPM,

and

2. b : LPM × LPM → R is positive definite if

b([α], [α]) ≥ 0 for [α] ∈ LPM

with equality if and only if [α] = 0 ∈ LPM .
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It will be noted immediately that these are the two properties required to
make b an inner product on LPM . See section 13.6 in Chapter 13.

At this point we are going to abuse notation a little bit in the way we did
with linear Leibnizian functional fields. A function

b :M →
⋃

P∈M

T
2
P (LP (M)) with b(P ) = bP ∈ T

2
P (LPM)

is called a two tensor (or two form field or two tensor field or zero-two
tensor (field)) on M . These words all mean the same thing. Note that for
each two form field there is, for each P ∈ M , a two form b(P ) at the point
P denoted by

bP : LPM × LPM → R.

Notice the difference between a two tensor and a two tensor at a point.
The collection of all two tensors may be denoted by T 2(M). Notice the

implicit reference to the filament spaces LPM here: An element b of T 2(M)
is a function

b :M →
⋃

P∈M

T
2
P (LPM) with b(P ) = bP ∈ T

2
P (LPM).

Partial/Preliminary Definition 1. A Riemannian metric tensor µ on
M is a two form field satisfying certain properties:

(i) For each P ∈M , the two form

µP = 〈 · , · 〉P : LPM ×LPM → R

at P is symmetric and positive definite, and

(ii) µ satisfies some regularity condition.

There are various ways to desribe various regularity conditions which can
be used to complete this partial definition. They are all, as far as I know,
fairly complicated. In order to understand some such regularity conditions
and preferably some of the simpler ones, let us review some aspects of the
special case of a manifold U which is an open subset of Rn and make a con-
nection between TxR

n and Lp(x)M when x is in a local chart U in particular.
In the special case when U is an open subset of Rn and we have both

TxR
n and LxU
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we consider LxU as an inner product space with the inner product

〈[α], [β]〉x = 〈α′(α−1(x)), β ′(β−1(x))〉Rn .

This makes the mapping A : TxR
n → LxU by

A(v) = [α] where α(t) = x+ tv

not only a linear space isomorphism but an inner product space isomorphism
or what is called an (inner product space) isometry. What this observation
is really saying is that in this special case, we really do not need to consider
LxU . We already have a much simpler linear space assigned to each point
x ∈ U , and that space is already an inner product space; that space is just
the tangent space TxR

n = Rn.
As a consequence, in this special case while we can consider filament

spaces LxU , filament fields on V , tensors (of order two) and inner products
on filament spaces, we do not. Instead we consider the versions of these
directly on the tangent spaces TxR

n with natural and standard coordinates.
Thus, instead of filaments [α] ∈ LxU we have vectors v ∈ TxR

n; instead of
filament fields

ℓ : U →
⋃

x∈U

LxU

we have vector fields v : U → Rn or more properly

v = (v1, v2, . . . , vn) : U →
⋃

x∈U

TxR
n.

Finally, we have the inner product

〈 · , · 〉R2 : TxR
n × TxR

n → R

which is a symmetric, positive definite, bilinear form directly on the tangent
space TxR

n = Rn instead of (the equivalent) bilinear form

〈 · , · 〉x : LxU × LxU → R

mentioned above. When we refer to tensors on U or write T 2(U) we mean
elements of

(

⋃

x∈U

T
2
x
(Rn)

)U

=

(

⋃

x∈U

T
2
x
(TxR

n)

)U
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instead of (the usual)
(

⋃

x∈U

T
2
x
(LxU)

)U

.

For the promised connection between TxR
n and Lp(x)M , we know these

are linear space isomorphic, and we consider the linear isomorphism deter-
mined by

v → [α]

where α(t) = p(x+ tv). We denote this linear isomorphism by

dpx : TxR
n → Lp(x)M

and may call it the differential map of p at x though there is no formula
for this map (at least at this point) in terms of a/any derivative.

We can then apply the above described conventions to the special case
U ⊂ Rn when U is a local chart with a given chart function p : U → M .
The Riemannian metric tensor induces a two form field

b : U →
⋃

x∈U

T
2
x
(TxR

n)

by
bx(v,w) = µq(x)(dpx(v), dpx(w)).

This two form field on U determines n2 functions gij : U → R by

gij = gij(x) = bx(ei, ej).

The resulting matrix g = (gij) is symmetric and positive definite. Thus, we
can define functions

gij : U → R for i, j = 1, 2, . . . , n,

g : U → Sym+
n (R) ⊂ GLn(R), and

ρ ◦ g : U → R
n2

where ρ is the row injection of GLn(R) into Rn2
. Equivalent minimal (chart)

regularity conditions required to complete the definition of a Riemannian
metric tensor given above are

gij ∈ C0(U), i, j = 1, 2, . . . , n, (3.29)
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and
ρ ◦ g ∈ C0(U → R

n2

) (3.30)

for all (U,p) ∈ A1
∗.

Exercise 3.46. Show that if (3.29) holds for all (U,p) ∈ A where A is some
covering atlas in A1, then (3.29) also holds for every (U,p) ∈ A1

∗.

The usual assumption is

gij ∈ C∞(U), i, j = 1, 2, . . . , n, (U,p) ∈ A∞
∗ . (3.31)


