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A DUALITY THEOREM FOR WILLMORE
SURFACES

ROBERT L. BRYANT

0. Introduction

In 1965 T. J. Willmore [12] proposed to study the functional

= f H
JM

f 2dA
M

on immersions X: M2 -» E3, where M2 is a compact surface, H is the mean
curvature of the immersion, and dA is the induced area from (or area density if
M is not oriented). If we define

f
then by the Gauss-Bonnet theorem

iT(X)= f (H2- K)dA,

so the two functional differ by a constant. The functional i^(X) has the
advantage that its integrand is nonnegative and vanishes exactly at the umbilic
points of the immersion X.

Obviously iT(X) = 0 iff M2 = S2 and X is totally umbilic. Thus, the
absolute minimum of #"on the space of immersions X: S2 -> E 3 is 0 and the
critical locus of such X is known. When M is a torus, Willmore provided an
example of an immersion X: M -* E3 with iΓ(X) = 2ττ2 and showed that
iΓ(X) > 2π2 for all smooth surfaces of revolution. He then conjectured that
iΓ(X)^ 2*π2 for all immersions of the torus with equality only for the
example he provided: the anchor ring swept out by revolving a circle of radius
r about the line whose distance from the center of the circle was r]/ϊ. White
then pointed out that the two-form (H2 - K) dA had the property of being
invariant under conformal transformations of E 3 plus the "point at infinity"
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and hence that the cyclides of Dupin generated from Willmore's anchor ring

by conformal transformations must also satisfy iΓ{X) = 2ττ2. The conjecture

was then modified so that equality was supposed to hold only if the immersion

was conformally equivalent to Willmore's anchor ring.

In 1982, Li and Yau introduced the notation of conformal area, VC(M), for

a surface M with a fixed conformal structure. They then showed that, for a

conformal immersion X: M2 -> E3,

VC(M).

Since they were able to show that VC(M) > 2ττ2 for M a torus with a

conformal structure near that of the square torus, this proves part of Willmore's

conjecture.

In this paper, we study the Willmore functional using the conformal

invariance from the outset. In §1 we develop the structure equations for

conformal three-space (i.e., S3). We then apply the moving frame to study

immersed surfaces X: M2 -> S3. We define a conformally invariant 2-form Ωx

on M and show that for any stereographic projection p: S3 — {y0} -> E3, the

equation

Ωx= (H2- K)dA

holds, where the quantities on the right are computed for the immersion p ° I :

M -» E3. This demonstrates the conformal invariance of the Willmore

integrand and the conformal invariance of the umbilic locus (JUX =

{m e M\Qx(m) = 0}.
We then construct, on the compliment of the umbilic locus, a smooth map

X: M - °UX^> S3 with the defining property that if m0 £ Wx, then X(m0) is

the unique point so that the mean curvature of p ° X vanishes to second order

at m0 for any stereographic projection p: S3 - { ί ( m 0 ) } -> E3. We call X the

conformal transform of X. Unfortunately, it is not true, in general, that X = X.

In §2, we compute the Euler-Lagrange equation for the functional i^. In

Euclidean terms, this is known to be the equation

Δ # + 2 ( # 2 - K)H = 0.

Our derivation is conformally invariant and leads us to consider the complex

structure on M2 induced by the induced conformal structure and a choice of

orientation on M2. We say that an immersion X: M2 -» S3 is a Willmore

immersion if it is a critical point of the Willmore functional. In §3 we prove

two basic theorems relating the Willmore immersion to the complex structure.

The first, Theorem B, constructs a holomorphic quartic differential on M from

the Willmore immersion X, denoted Άx, The second, Theorem C, shows that if



A DUALITY THEOREM FOR WILLMORE SURFACES 25

a Willmore immersion is not totally umbilic, then the conformal transform
completes smoothly to a branched conformal immersion X: M -> S3. If
Stχ = 0, then X is constant. If Άx & 0, then X is also a Willmore (branched)
immersion and satisfies X = X. We say that Xis the Willmore dual of X

In §4, we use the fact that i ^ ^ O for M = S2 to completely classify the
Willmore immersions X: S2 -» S3 in terms of a special family of minimal
surfaces of finite total curvature in E3. In turn, we reduce this problem to an
algebraic geometry problem concerning zeros and poles of meromorphic
functions on CP1. In fact we show that all the critical values of iΓon spherical
immersions are nonnegative multiples of 4π. This result is closely related to
another theorem of Li and Yau. They show that for any immersion of a
compact surface X: M2 -» E3 the inequality #*(JQ > 4πk holds, where k is
the maximum number of points in X~\p) as/? ranges over E3. We show that,
for Willmore immersions satisfying Άx s 0, equality always holds in their
theorem. It is an interesting question whether or not equality implies^ s 0.

Finally in §5, we compute an example. We find there is a 4-parameter family
of Willmore immersions X: S2 -> S3 with iΓ(X) = 12ττ (the next nontrivial
case after iΓ{X) = 0). This parameter space is noncompact and its members
are inequivalent under reparametrizations in S2 and conformal transforma-
tions in S3. We indicate that the moduli space of Willmore immersions with
iΓ{X) = Mid + l)ττ is of dimension Ad for d > 0. We then close with a short
discussion of the cases where X: M2 -> S 3 is a branched conformal Willmore
immersion.

The methods of the moving frame are used throughout the paper. The basic
reference on Riemann surfaces has been [5] and our notations for divisors and
line bundles are consistent with this reference. It is a pleasure to thank Phillip
Griffiths for the many interesting discussions concerning Riemann surfaces
and invariant variational problems which inspired this work.

1. Conformal geometry of surfaces in S3

We first describe the standard model of S3 as a conformal space. On R5, we
consider the standard Minkowski inner product

(x9 y) = -χ°y° + JC 1/ + χ2y2 + χ3y3 + *V>

where x = (xa), y = (ya) and we use the index range 0 < a, b, c < 4. Follow-
ing the terminology of relativity, we say that an x e R5 is space-like if
(x9 x) > 0, time-like if (x, x) < 0, and light-like (or null) if x Φ 0 but
(x, x) = 0. We fix an orientation on R5 by requiring dx° A dx1 A dx2 A dx3
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Λ ά 4 > 0, and we fix a time-orientation on R5 by saying that a time-like or
light-like vector x e R5 is positive (or future directed) if x° > 0. For brevity, we
will simply write L5 to denote R5 together with the three choices of inner
product, orientation, and time-orientation.

The space of null lines through O e L 5 forms a smooth manifold diffeomor-
phic to the three-sphere and henceforth will be denoted by S3. LetJ^+ denote
the space of positive null vectors in L5. For each x e «£?+, we denote the line
spanned by x by (x). This gives us a map «£?+-> S3 which is a smooth
submersion. The fibers of this map are the positive null rays emanating from
0 e L5. The metric on L5 restricts to the hypersurface J£?+ to be a degenerate
inner product of type (3,0). The null space at each x e «^+ is the tangent to
the line (x). The dilation x •-> rx (r > 0) multiplies this metric by a factor of
r2. It follows that, up to a positive factor, this metric descends to S3. In this
way, S3 inherits a natural conformal structure. If vl9 v2, v3 form a basis of
Γ(JC)S

3, let ex e2, e3 e TXJ?+ denote a set of preimages under the map TXJ?+-+
T(X)S

3. We say that υλ A υ2 A v3 > 0 if x A eλ A e2 A e3 A y > 0, where
y e «£?+ but j ί (x). It is an exercise to check that this well-defines an
orientation on S3 (independent of our choices of x, e, and j>).

An automorphism of L5 is a linear automorphism of R5 which preserves
( , ), the orientation and the time-orientation. We denote the group of
automorphisms of L5, by Aut(L5). This is known to be a connected Lie group
of dimension 10 and is isomorphic to the identity component of the group
SO(4,1), see [7]. The group Aut(L5) acts on S3 in the obvious way and induces
a group of conformal, orientation-preserving diffeomorphisms of S3. It is a
classical theorem that each conformal, orientation-preserving diffeomorphism
of S3 is induced by a unique element of Aut(L5), see [1].

Another classical model of S3 is " E 3 with a point at infinity". Because we
will need to compare surface theory in E 3 with conformal surface theory in S3,
we comment on how this transition is made. First, we note that, for x, y e «£?+,
we have (x, y) < 0 with (x, y) = 0 iff x A y = 0. Thus, if we set

then the natural map Ey ^ «£?+-» S3 establishes a diffeomorphism Ey^S3 —

{(y)} If we give Ey the (positive definite) metric induced on it as a submani-

fold of L5, then this map is obviously conformal.
Proposition 1. The space Ey with its induced metric is isometric to E3.
Proof. Let JC0 e Ey be fixed and define the affine map P: L5 -> (xo)

±

P(z) = z - xo+ (xo,z)y.
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This map establishes a diffeomorphism between Ey and the three-plane (JC0, y)±

(necessarily a space-like plane). The inverse is give by the quadratic map

Q(w) = x0 + w + \(w,w)y9 w e (*0, >;)± .

It remains to show that this is an isometry if we give (x 0 , y)-1 the induced

metric. However, if z e Ey and i e 7 ^ , then we have ( i , 7 ) = 0. We

compute

= (i, i ) + 2(x09 z)(z, y) + (x0, z)2(y, y)

= (z9z). q.e.d.

In order to study surface theory in S3, we introduce moving frames. Let

B = (Bab) denote the symmetric matrix

0 0 - 1
0 73 0

- 1 0 0

We let^* denote the space of positively oriented bases 6 = (e0, el9 e2, e3, e4)

= (ea) of L5 satisfying the condition

The group Aut(L5) acts simply transitively on & in the obvious way. This

shows that & is a connected smooth manifold of dimension 10.

We let

O(B)={geM5x5(R)\tgBg = B},

and we let G be the connected component of the identity I5 e O(B). Note that

G is isomorphic to Aut(L5), though not canonically. G acts naturally on the

right of & by the formula

where g = (g^) e G. This action is also simply transitive. Hence we may

identify J^ with G up to a left translation in G.

If we regard the components of 6 e & as determining L5-valued functions

on J**, efl: ̂ "-» L5, then we may compute their exterior derivatives, dea as

vector-valued 1-forms on &. Since the ea form a basis, there exist unique

1-forms ωa

b on^* satisfying

(1.1) dea = ebω°b.

Differentiating (1.1), we get

(1.2) dωa

b=-ωa

cΛωc

b.



28 ROBERT L. BRYANT

These are the structure equations of E. Cartan. If we differentiate the relation

(βa> eb) = Bab a n d S e t ωab = Bacωb> t h e n W e g e t t h e ΓβlatlOΠS

(1-3) ωab + ωba = 0.

Thus, only ten of the ωa

b are independent. Under an identification of IF with

G up to left translation, these are a basis for the left-invariant forms on G.

The map (e0): <̂ "-> S3 makes J^ into a fiber bundle over S3 with fiber

Go = {g e G\eo(t g) = eo(4) for

It is easy to compute that

r-1

0
0

'cA

A
0

\r'ι
re
r

r > 0 , c G M 3 x l ( R ) \

andΛ e SO(3) c M 3 x 3 (R) Γ

From this, we see that the forms {ω0, COQ, ωo) span the semibasic forms for

the projection (e0): Ĵ *-> S 3 . In fact, the symmetric quadratic form (ωι

0)
2 +

(<0Q)2 + (WQ)2 and the exterior 3-form ω̂  Λ ω̂  Λ ω̂  are well defined up to a

positive multiple on S3 and determine the conformal structure and orientation

respectively.

Now let M2 be an oriented surface and suppose we are given a smooth

immersion X: M2 -> S3. We want to study its geometric invariants under the

conformal group of S3.

We define the Oth order frame bundle of X, J^ 0 ) , by

We have a diagram:

We will now work on J^ 0 ) . Following the usual practice in the theory of

moving frames (see [2]) we will write φ instead of ^*(φ) to denote forms on

^^ which are pulled back from ^ \ This should cause no confusion as long as

we clearly specify the manifold on which we are working.

The forms {ω0, co2,, ωl) on ^jp are now semibasic for p. Since M has

dimension 2, there must be a relation among these three forms and because/?:
0 > M is a submersion, there cannot be more than one such linear relation.
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If g e Go is of the form

'cA

A
0

\r\cc

re
r

then one computes that

/ 1 \ ί 1 \

where Λg: J^°> -* J^°> is Λ,(/>, rf) = (/>,* g).
It follows that we may define the first-order frame bundle, &jp, by

*P = {(P, *) e^iO)l"o|(/,,,) = 0, U Λ «g) |(ί>/) > 0).

We remark that, because M2 is assumed oriented, the 2-forms on M which
do not vanish are divided into positive and negative; so too are the semibasic,
nonvanishing 2-forms on J^ 0 ) . Thus, once we impose the condition <0Q = 0, the
nonvanishing of COQ Λ COQ allows us to choose its sign. We define the group

0
0

%pA

A

0

A =
c -s 0\
^ c o L c 2 + j 2 = i;
0 0 1/

M is a right principal GΓbundle over J^ 1 } . We

. The forms { ω\, COQ } are now a basis for

and we note that p: S

now restrict the forms

the semibasic forms. Because ωl = 0 and because COQ = 0 by (1.3), we compute

0 = dωl = -ω\ Λ (OQ — ω\ A ω%.

It follows, by Cartan's Lemma, that there exist smooth functions htj = hjΊ

on JΓ^1) so that ω] = h^ω^. Here, we adopt the index range 1 < i, j < 2.
One now computes that

'11

'21

'12

' 2 2 ) [~S C)[ *n
when

r"1

0

0 0 r
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with

A =
c
s
0

-s
c
0

0
0
1

V̂
2

Correspondingly, if we differentiate the equations ω] = λ i y ω<{ and apply
Cartan's Lemma, we get the infinitesimal version of the above equation:

huω
0

0 + hik<ή + hkiωf + hijkω
k

Q,

symmetric in all indices (1 < /, j , k

dhu = -δ

where { hijk } are smooth functions

It follows that, without making any further nondegeneracy assumptions, we

can always make & partial second-order reduction:

) = 0} c

This is a Gγ-bundle over M,

1
r λ

0

I o

where

*PA
A

0

rP
r

€Ξ G i
< p l \

P2

{ 0

Our formulae imply that, on ̂ Jp, for g G Gl5

Au - h22f + h\2) = - Λ 2 2 ) 2 + Λ?2),

Λ («i Λ <4) = r-W0 Λ ω\.

Thus, there exists a smooth 2-form on M, Qx, which satisfies

Λ ω0

2.Ό ( iZ v ) — ( Ϊ ( Λ Ί 1 — M i l i T H I Λ I fcϋπ / \ tun

Note that Ω^ ^ 0. We define the umbilic locus of Xby Wx= {p ^ M\(Ωx)p

= 0}. This terminology will be justified below. Note that °UX is closed. Let

~Λfχ Q M denote the compliment of ΰllx in M. We assume that Jίx Φ 0. We

can define the second order frame bundle, ̂ x

2\ over Jfx by

A ,

Hi hλ2

•21 ^ 2 2 1J \0 - l )

This is a G2-bundle over ̂ Λ̂ -, where

1 'pA

0 A p

0 0 1

Note that G2 c Gy and that J ^ 2 ) c

^ 1 = 0
0 0^
c 0

0̂ 0 1,
P

oi
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Our formulae for dh^ now implies ω^ = hλω\ 4- /i2^o, where we have set
hj = 2(^11/ + h22J) for brevity. We then compute

when

8 =
c

0

0

0

R*\hl

c
0
0

0

0

0

1

0
0
1

G-,.

It follows that we may define the third order frame bundle, ̂ ^ 3 ) , over Jίx by

Now G3 c G2 is a discrete group isomorphic to Z/(2). It is defined by the
above formula with/?1 = p2 = 0.

Note that, for g e Gγ, we have the identity e3(ό g) = e3(£). It follows that
e3: J ^ γ ) -> L5 is constant on the fibers of the Gγ-bundle p: J ^ γ ) -> M 2 and
hence there exists a unique smooth map yx: M2 -» L5 so that ^3 = γ^° /? =

Note that because (e 3 , e3) = 1, we see that γM: M 2 -> β, where

For reasons that will be made clear below, we call yx: M2

Gauss map of the immersion X.
Obviously, e4: J ^ 3 ) -* L5 is constant on the fibers of p:

may define a mapping X: JΓX -> 513 by the formula

Q the conformal

L5. Thus we

We call ^ the conformal transform of the immersion X (when ̂ Γ x # 0 ).
These two associated maps play an important role in the sequel. We will now

pause to interpret them in terms of more familiar classical invariants of
Euclidean surface theory.

We have already noted that, by identifying E 3 with Ey c j£?+, we may regard
E 3 as S3 minus a point. Now ίixy tΞ&+ and l e t ^ = [ί = (ea) e W\e4 = y).
The projection e0: ^y^> Ey then makes J^ into an SO(3)-bundle over Ey. If we
restrict the forms ωa

b to J^, we get ω% = 0 since eaω4 = J^4 = φ = 0. Since
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(1.3) implies ω% = -<0Q we see that on &y we have

de0 = e^0 + e2ω
2

0 + e3ω
3

0.

Thus !Fy may be regarded as the oriented orthonormal frame bundle over Ey. If
we are given an immersion Xo: M2 -* Ey, we may regard X(p) = (X0(p)) as
an immersion X: M2 -> S 3 . Since we want to compare local surface theory in
E 3 with conformal surface theory in S 3 , we may suppose that we have chosen a
lifting t: M2 -> J^ of Jf0 with the property that J(p) = (eα(/>)) with eo(p) =
-X"0(/0> w i * β i ( / 0 ^ d ^2(^) a n oriented tangent basis of X0+(TpM\ and of
course, with e4(p) = y. We write ^*(ω£) = TĴ  in order to avoid confusion. We
then have

rβ = 0, Vo Λi) 2o>0, η3 = 0 , η3 = h ^

for some functions htj on M.
The Gaussian and mean curvatures of the immersion Xo: M2 -> Ey ^ E are,

respectively

K=huh22-h2

l2, H=^hu + h22).

Now ^: M 2 -• J^ is clearly a section of the bundle J ^ 1 } -> Λf2 (though not
necessarily of ^ i γ ) ) . We may compute Ω^ by using the identity Ώx =

= (H2 - K)rh A η2 = (H2 - K) dA.

Thus Ω^ vanishes only along the umbilic locus of Xo: M2 -> E3. This shows
that, even though the Euclidean second fundamental form is not a conformal
invariant, the notion of umbilic is a conformal invariant. This justifies our
definition of the umbilic locus of X as the zero set of Ω .̂ Another consequence
of this calculation is that the Euclidean invariant (H2 — K) dA is actually a
conformal invariant. This fact was noted in connection with Willmore's
problem by White [11].

In order to get a section of J ^ γ ) -> M2, it suffices to take 1= (ea\ where

e3 = e3 + He0,

He,

for, if we now compute η 3 = A/y.% = A .̂η'o, we get

de3 = rfe3 + dHe0 4- /ίrfe0

= eodH - ei(η{ - Hrfc) - e2(η\ - Hη2),
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SO

η» = dH = M o + M o ,

η{ = η{ - Hrfb = £(Λn - * 22)^0 + ̂ η 2 , ,

ή | = η3 - i/rj2 = huη
2

0 + K^22 - * i i H

ThusΛn + A 2 2 = 0.
In particular, it follows that yx = e3 + /fe0 is the conformal Gauss map of

the immersion X = (Xo). This has the following geometric meaning: If v e Q,
then y 1 c L 5 i s a 4-plane on which the inner product ( , ) restricts to have
type (3,1). In particular, υ± Γ)J?+ is a cone over a round S2 Q S3. This S2 has
a natural orientation given by the condition that, if # e J*" has e3(^) = ϋ, then
e l 5 e2 mod ^ 0 form an oriented basis of T^eo)S

2. Conversely, every round,
oriented S2 Q S3 arises in this way from a unique v e Q. Thus, the points of Q
form the space of round, oriented S2's in S3. Given an immersion X:
M2-+S3 of an oriented M2, suppose we fix p0 e M. Then there exists a
1-parameter family of round, oriented »S2's in S3 where are oriented tangent to
X(M2) at X(p0). If we think in terms of the Euclidean model E3 = S3 - {(y)},
then these spheres are parametrized by their mean curvature (H = 0 corre-
sponds to a sphere through (y), i.e. a plane in E3). The sphere yx(p0) ^ Q is
the one with the "same mean curvature" as the surface X(M2) at X(p0).
Alternatively, in terms of the Euclidean model, the sphere yx(p0) is the one
such that any conformal transformation which renders it into a plane trans-
forms the surface X(M2) so that it has mean curvature zero at X(p0).

The conformal Gauss map has other interesting properties:
Proposition 2. Let Q c L5 be given the induced pseudo-Riemannian structure

of type (3,1). Let X: M2 —> S3 be a smooth immersion of an oriented surface and
endow M2 with the induced conformal structure. Then yx: M2 -> Q is weakly
conformal, it is an immersion away from the umbilic locus of X, and Ωx is the
induced area form ofyx: M2 -> Q.

Proof. On &x

y) we have ω* = 0 so we compute

(έfe3, de3) = (έ?o<°3 + elω\ + ^2ω3» ^0ω3 + elω\ + e2ωΐ)

(*π + Λi22)(4)2 + 2A12(AU
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because hu = -h22 on ^x

y\ Because yx = e3 on ^x

y) and because the
pseudo-metric on Q is the restriction of the pseudo-metric on L5, we see that
(dyx, dyx) is proportional to (<0Q)2 + (ω2,)2, which defines the induced
conformal structure on M2. This proves that yx is weakly conformal. The
induced area form of (dyx, dyx) is obviously

(Aii + * ? 2 ) 4 A ω2 = (j(A n - h12)
2 + Λ^ω* Λ ω2 = Ω^.

Finally, since Ωx = -ω3 Λ ω2 on ^X

Ύ\ it follows that yx: M -> β is an
immersion away from <^x.

Remark. A word of caution is in order. Because the pseudo-metric on Q is
not positive definite, weakly conformal is not as strong a condition on yx as it
would be if the pseudo-metric were instead a positive definite metric.

In order to interpret-the conformal transform geometrically, let us assume
that our immersion Xo: M2 -» Ey is umbilic free and that the framing £\
M2 -»J^ is principal (i.e. hl2 = 0) with hn > h22. Then setting R

= / i (* i i - ^22) > °» w e m aY a d a P t *'• M1 -* ̂ χy) further to h M2

by ^ = (*?α), where

^3 = («3 + Heθ)>

eA = R-\eA + He3

This allows us to compute

de3 = eo(R~ιdH) - exf0 + e2η
2.

So

ω°3 = Λ - t o = Λ - ^ ί o + R-ιH2τjl = htfo + h2η
2.

Thus, we may adapt S\ M2 -> J ^ 2 ) to ^*: M 2 -> J ^ 3 ) by ^* = (e*), where

e j ; = Re0, e* = β l - Hλe0,

e\ = e2 4- i72^0, ej = e3 + //^0,

^* = Λ - 1 ^ + ^ 3 - Hxex + if2^2 + i(j5Γ2 + H2 + if2

2)e0).

As a consequence, we have ωίj* = 0.
The geometric meaning of X = (e*) is now clear: \ίp e M is nonumbihc for

Λ": M 2 -> S3, then ^( ?) is the unique point in S3 such that a stereographic
projection from X(p), p: S3 — {X(p)} -> E3, causes the mean curvature of
the immersion p ° A r : M 2 ^ E 3 t o vanish to second order at p e M2.
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2. The variational equations for the Willmore functional

If X: M2 -> S3 is a smooth immersion of an oriented surface, we have seen
that we may construct a canonical 2-form &x (> 0) on M2 from the second
order jet of X If K c M2 is a compact domain in M, we can define the
functional

on the space of smooth immersions of M2 into S3. We say that X is a Willmore
immersion if for any compact K Q M and any smooth variation X,: M -> S3

with support in .fif, we have

= 0
= 0

(of course, Xo = X). The purpose of this section is to calculate the Euler-
Lagrange equation for this variational problem in a conformally invariant way.
We do this by the method of moving frames.

Let Xt\ M2 -» S3 be a smooth 1-parameter family of immersions with
support in a compact set K c M for |/| < ε for some ε > 0. We may assume
that the variation is normal since the support is compact. It follows that we
may construct a G γ-bundle^ γ ) c M X (-ε, ε) X J^with the property that

for all t0 e (-ε, ε). (We cannot construct J^*(2), etc., without making an
umbilic-free assumption).

The important defining properties of J ^ γ ) are that
(i) <0Q = λdt for some smooth function λ o n & $ \

(ii) ωι

0 A ωl is semibasic for the projection ^ i γ ) -> Λf and is positive. (This
uses the normality of the variation.)

(iii) ω3 = hijωί + λ,.Λ, Jλ = -λωg + λ^l) + λ'Λ, where htj = Ay7, λ, , λ'
are smooth functions on^iy).

Λt

We also have hn + h22 = 0. (These equations come from differentiating the
equation ωl = λdt and using the structure equations. The normalization
hn + h22 = 0 is the equation defining J ^ γ ) c ^ } . ) Now λ is well defined up
to a multiple on M X (-ε, ε) and its support lies above K X (-ε, ε) in ^ £ γ )

since λ vanishes when the variation vectorfield vanishes. Also, the support of
the functions λ lies above K X (-ε, ε) because of the equation dλ + λω® =
λ ωj) + λ' dt. Note that we have
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for all t0. It follows that if we set

Φ = -ω{ A ω\ + dt A (d/dtj(ω\ A ω3

2)),

then 3 / 9 / J Φ = 0 and we have, for all /0,

2X = Φ | , , .

This implies that Φ is well defined on M X (-ε, ε) and is semibasic for the
projection to M. We may then set

κ t=t0

We compute the variation

o = /(3/3ίJJΦ)| ( o

(since 9/9/ J Φ = 0). This expands to

/r(0) = ί (-9/9rj(dω\ Λ ω̂  Λ -ω{ A dω\) - d(\^3

2 A λ2ω
3

1))
κ t=o

By the structure equations,

-d(ω{ A ωl) = ω^ Λ(CO? A ωl + ω{ A ω%) + ω? A(<0Q Λ ω\ + ω^ Λ ω%).

If we denote restriction to t = 0 by an overbar, we find

-(d/dtAd(ω{ A ω^))| ί = 0 = λ Λ(ω?Λ ω\ 4- ω\ A ω°2) + ω^ Λ (λ2ω
ι

0 - \ωl).

This may be rewritten as follows: We know that <o° = Λ̂ ωJ) and, if we
differentiate this, use the structure equations, and apply Cartan's Lemma, we
get

Si, = Ih&l + hjωj + Λ/7ω,° + ̂  ω>

for some smooth functions ptj = pβ onJ^o

γ ). It is then an elementary matter to
compute that

-(d/dtJd(ω{ A ωl))\^0^λ(pn+p72)^0 A ω2

0 - d(\(h^2

0 - h2ω\)).

Thus, our formula becomes

/'(0) = fλ(Pn + ̂ 22)4 Λ ωl - dχ9

where

X = \ΰ3

2 - λ2ω{
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It is now a routine matter to check that χ is a well-defined, smooth 1-form
onM and by our previous discussion of λ and λi9 χ is supported in K. Thus, by
Stoke's Theorem, we get the variational formula

/
Jκ

This motivates the following definition. Let X: M2 -> S3 be a smooth
immersion and l e t ^ £ γ ) -> M2 be its γ-order frame bundle. On J ^ γ ) , we have
ω® = Λ COQ and the structure equations imply that there exist smooth functions

so that

dht = 2A,c*o + Λ7 ω/ + h ^ + Λ j ω>.

Our discussion above implies that the two-form 80,χ = (/?u + /?22)ωo Λ ωo *s

well defined up to a positive factor on M (in any case, this is elementary to
check). We call SQX the first variation of the Willmore integrand, Ωx. Note that
δΩ^ depends on the fourth order jet of X9 while Ω^ depends on the second
order jet. We record this as

Theorem A. Let M2 be an oriented surface. Then X: M2 -> S3 is a Willmore
immersion if and only ifδίlx = 0.

Proof. If λ is any smooth function on M with compact support in K c M,
then there exists a variation Xt with support in K so that λe3 is the variation
vectorfield at t = 0. Then we have shown that

Since λ is arbitrary with compact support, it follows that the left-hand side
vanishes for all such variations iff δQ,x = 0. q.e.d.

A few remarks are in order concerning the geometric meaning of the
condition δΏ,x = 0. Since these will not be needed in the sequel, we leave the
proofs as exercises in the use of the structure equations.

The first remark is that, if we pursue the relationship with Euclidean surface
theory begun in §1, we can easily show that the condition δtix = 0 is
equivalent to

ΔH + 2(H2 - K)H = 0

when we regard X: M2 -> S3 as arising from an Euclidean immersion Xo:
M2 -» E3. In this form, the Euler-Lagrange equation for the integrand
J(H2 — K) dA has been known for some time [12].

The second remark concerns the relationship of this problem with the
geometry of the conformal Gauss map yx: M2 -» Q4. For definiteness, let us
assume X: M2 -» Q4 is free of umbilics. Then yx: M2 -> Q4 is a space-like
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immersion and ίlx is the area form induced from the pseudo-metric on Q4.
From this it is obvious that if yx is a minimal immersion, then X must be
Willmore. Interestingly enough, the converse is also true. We see this as
follows: If we compute the signature of the inner product on the normal
bundle to the immersion yx, we see that it is of type (1,1). In fact, because of
our umbilic-free assumption, the normal plane to yx at p e M is the 2-plane
spanned by X(p) and X(p) (the conformal transform). By the structure
equations, the mean curvature of the immersion yx in the direction X is zero
already. The condition that the mean curvature in the direction X be zero is
exactly that 8ΏX = 0. This establishes our claim. In some sense, the theory of
minimal space-like surfaces in Q4 and the Willmore surfaces in S3 are the
"same" theory, at least under suitable nondegeneracy hypotheses. This situa-
tion has been encountered before in the relationship of surface theory in S4

(instead of Q4) with the theory of complex curves in β3(C), the complex
3-quadric (instead of real surfaces in S3). This should be no surprise since
SO(5) and SO(4,1) are merely different real forms of the same complex Lie
group. It appears that all of this must fit into a sort of generalized twistor
program, but we will not pursue this any further.

Our third and final remark is related to the second. If yx: M2 -» Q4 is
minimal and U c JΓχ ( c M) is the open set, where X: Jfx^> S3 is an
immersion, then yx: U -> Q4 is given by the formula yx = -yx. It follows that
X: U -» S3 is a Willmore immersion and that X = X. In this case, we say that
X is the Willmore dual of X. In the next section, we are going to show that X
extends to be a smooth map X: M2 -> S3 and is, in fact, a conformal branched
immersion, where we use the conformal structure on M 2 induced by X:
M2 -> S3.

3. The conformal structure and some complex geometry

Throughout this section X: M2 -> S3 will be a Willmore immersion of an
oriented surface M2 and ^x

y) -> M2 will denote the Gγ-bundle of γ-order
frames. The quadratic form (ω\)2 + (ω2,)2 is well defined up to a positive
multiple on M2 and hence induces a well-defined conformal structure on M2.
Moreover, the orientation of M2 is represented by the positivity of the 2-form
ωo Λ ωo (again only defined up to positive multiples on M2). It follows from
the existence of isothermal coordinates (see [3]) that M2 possesses a unique
complex structure compatible with the given conformal structure and orienta-
tion. The defining property of this complex structure is that a complex valued
1-form η on M2 is of type (1,0) iff p*(η) = a(ωλ

0 + zω2,) for some complex
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function a on J ^ γ ) (where/? is the projectionp: J ^ γ ) -> M2). From now on,

we regard M2 as a complex curve with this given complex structure.

Retaining the notation from §§1, 2, we introduce the complex notation for

forms on

(3.1) ω = ωι

0 + ιωg, a = <o? 4- ico®, Φ = ωg, p = ω{,

(3.2) z = A n - / A 1 2 , * - έ ( A i - Λ 2 ) -

Then the formulae in §1 become

(3.3) ω{ — iω\ = zω,

(3.4) ω° = Aω + Aω,

(3.5) <& = (φ + 2ιp)z + f ω + Aω,

where f is a linear combination of the hijk (the coefficients are unimportant for

what follows). Differentiating (3.4) and using the structure equations give

(3.6) dh = (2φ + ιp)A + \za + ^ω,

where q = (/?X1 — ip12), as the/?/y = /7y/ were defined in §2. Note that (3.6) uses

the fact that X is a Willmore immersion, i.e., pn 4- p22 = 0. Otherwise, we

would have had to add the term %(Pu + Pn)ΰ to the right-hand side of (3.6).

For convenience, we list the following consequences of the structure equations

in this notation:

(3.7) dω = - ( φ + ip) A ω,

(3.8) da = (φ — ip) A a — hzω A ω,

(3.9) Jφ = \{a A ω + α Λ ω),

(3.10) Jp = (i/2)zzω Λ ω +(ι/2)(ω Λ a + α Λ ω).

Theorem B. There exists a holomorphic quartic form Άxon M defined by the

condition

(Note that we use the symmetric product ( ω ) 4 = ω ° ω ° ω ° ω . Thus, we are

asserting that Άx as defined above is a holomorphic section of the fourth power

of the canonical bundle over M.)

Proof. If we differentiate equations (3.5) and (3.6) using the identities

(3.5)-(3.10) and applying Cartan's Lemma, we see that there must exist

smooth functions r, s on J ^ γ ) satisfying

(3.11) dξ = (2φ + 3ip)ξ - \za - z2zω +rω + qω9

(3.12) dq = (3φ + 2ip)q + \ζa - \ha - hzzω +sω.
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But then, equations (3.5), (3.6), (3.11) and (3.12) combine to give

(3.13) d(zq - hξ) = 4(φ + ip)(zq - hξ) + {zs - hr)ω.

Now, if / and g were any smooth functions on ^x

y) and n > 0 were any

integer satisfying the equation

(3.14) <//=Λ(φ + /p)/+gω,

then the quantity f(ω)n would be semibasic and locally constant on the fibers

of ^x

y) -• M (by (3.7) and (3.14)). Since Gγ is connected, this would be enough

to ensure that there existed an g on M so that />*(S) = f(ω)n. Moreover, we

claim that this g would necessarily be a holomorphic section of the «th power

of the canonical bundle of M. It suffices to check this locally, so let m e M be

fixed and let ξ: U -> C be a holomorphic coordinate chart on a neighborhood

U of m. Then dξ is of type (1,0) so it follows that there is a section over (7, say

σ: U -> J ^ γ ) , satisfying σ*(ω) = d£. Then

0 = d2ω = σ*(Jω) = -σ*(φ + ip) A σ*(ω)

= -σ*(φ + φ ) Λ ί/ξ,

so σ*(φ -h /p) = adξ for some α e C°°(U) (complex valued, of course). Be-
cause σ is a section,

Finally, (3.14) impUes d(f o σ) = (g + «α/) J£, so 3(/ o σ ) / 3 | = 0.

In other words, / ° σ is a holomorphic function on £/, so g ( t / = (/ °

is a holomorphic section of the nth power of the canonical bundle restricted to

U. Since m e M was arbitrary, it follows that g is holomorphic.

Now all that we have said applies in the case where n = 4, / = zq — hξ,

g = zs — hr and g = Άx.

Theorem C. Let M2 be connected and let X: M2 -> S3 be a Willmore

immersion. Either ^lx = M2 or else ^lx is a closed subset of M2 with no interior.

In this latter case, the conformal transform extends uniquely and smoothly to a

map X: M2 -> S 3 . If£x ΞΞ 0, then X is a constant map. If £x m 0, then X:

M2 -> S3 is a conformal branched immersion where the branching order of X at

m ^ M2 is less than or equal to the vanishing order of£x at m.

Proof. Consider the map Y: lFx

y) -* L5 given by

(3.15) Y = 2hhe0 - zhe - zhe + zze4,

where e = ex — ie2. We compute that

(3.16) (Y,Y)=0

and the structure equations show that

(3.17) dY = 3Yφ + Zω 4- Zω,
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where

(3.18) Z = 2hqe0 - zqe - hξe + zξe4.

We have the identities

(3.19) (y,Z) = (Z,Z)=0, {Z,Z)=2{zq-hζ){zq-hζ).

In particular,

(3.20) (dY9 dY) = 4\zq - htfω o «.

Note that J ^ 3 ) c JΓjr) is defined by the equation h = 0, z = 1, so 7 = e4 on

J ^ 3 ) (if J ^ 3 ) # 0 ) . Now equation (3.17) shows that, on any fiber of J ^ γ ) -> M,

y only varies by a positive multiple, so, in particular (Y): Jfx -> S 3 is well

defined (since Y: ^Γiγ)(^A-) ~~* «^+) a n ^ is equal to the conformal transform

X:JTχ-+ S3.

We are going to show that either Y = 0 (so that <%x = M) or that there

exists a smooth Yo: &x

y) -»Jδf+ and a smooth nonnegative function with

isolated zeros, λ, on M so that Y = λY0. It will follow that (Yo): M2 -> S'3 is a

smooth extension of (y): ^Γ^ -> S*3 and hence of X. Uniqueness and the rest

of the properties claimed for this extension will follow from our construction

of y0.

First we must prove a few facts.

Fact 1. If U c M is an open set with a holomorphic coordinate chart ξ:

ί / - * S c C , then there exists a unique section σ: U -> ̂ " i γ ) satisfying σ*(ω)

= dξ and σ*(φ + ip) = 0.

Proof. Because dξ is of type (1,0) and nonvanishing on ί/, there exists a

smooth (complex-valued) function a on^x

y)(U) so that a Φ 0 and

(3.21) />•(</{) = αω.

Taking the exterior derivative of (3.21) and using (3.7), we see that there

exists a smooth function b on^^ γ ) (ί7) so that

(3.22) da = (φ 4- ip)a + bω.

Taking the exterior derivative of (3.22) and using (3.7), (3.9) and (3.10) we

see that there exists a smooth function c on J ^ γ ) ( ί / ) so that

(3.23) db = 2(φ + iρ)b - aa + cω - \azzΰ>.

It follows that there exists a unique section σ: U -> ̂ X

Ύ\U) satisfying

σ*(α) = 1 and σ*(b) = 0. Applying this σ to (3.21) and (3.22) gives the desired

result.

Fact 2. Let wiGMbe fixed and let Ube a connected open neighborhood

of m on which there exists a coordinate chart £: ί / - > ^ c C with £(m) = 0.
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Let σ: U -» ^X

Ύ)(U) be the section defined above by Fact 1. Then either the

functions z ° σ and h° σ vanish identically on U or there exists a nonnegative

integer k and smooth functions zv hλ on U with (z 1(w), h^m)) Φ (0,0) so

that

(3.24) z o σ = ^ , * o σ = {*Λlβ

/. Applying σ* to (3.23) we get

(3.25) σ*(α)= (c° σ) dξ - \{z ° σ) (z ° σ) Jξ.

If we apply σ* to (3.5) and (3.6) we get

(3.26)
2

)σ ) = ( < 7 o σ — ^(z <> σ) ( z ° σ ) ) ^ + ^ ( c ° σ ) ( z ° σ ) dξ.

In particular, we have

It is now an elementary consequence of the Newlander-Nirenberg theorem

(see [10]) that (3.27) implies the conclusion of Fact 2.

Remark. If z ° σ and Λ°σ vanish identically on V we set k(m) = oo,

otherwise, we let k(m) > 0 be the integer defined in Fact 2. It is an elementary

matter to check that k(m) is actually well defined, i.e. depends only on m.

The proof of Fact 2 actually shows that the sets

U^ = {m e M|Λ(w) = oo}, ί£= {m e Λf|fc(w) < oo}

are open, disjoint and cover M. It follows that one must be empty (since M is

connected). If Uf = 0 , then z ^ O o n ^ i γ ^ so °UX = M. We now set this case

aside and we assume 1 / ^ = 0 .

Again, the proof of Fact 2 shows that the set £/+= {m

discrete set and hence that

is a divisor in M. We are now going to show that ^ has no interior. Indeed, if

m e M, then selecting £/ and σ as above, we may write z ° σ = ξ ^ . If

z1(m)Φ 0, then the only possible zero of z ° σ on a sufficiently small neighbor-

hood of m is m itself since ξ vanishes only at m. If zλ(m) = 0, then h^m) Φ 0

and (3.27) implies 3 z 1 / 3 | = Λl5 so ί/zx =£ 0 at m. It follows that zf 1(0) has no

interior on a neighborhood of m (sufficiently small). Thus the locus z ° σ = 0

on a neighborhood U' Q U has no interior, so we are done. The fact that ^ίx is

closed is obvious.
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Now for each m e U+, choose an open disk Δm c M with m e Δm in such a
way that A m n A π = 0 for m Φ n. Let ξm: Δm -> Δ be a holomorphic coordi-
nate, where £m(m) = 0 and Δ = {a e C| \a\ < 1} is the unit disk in C. By a
partition of unity argument, we may construct a smooth real-valued function λ
on M with the property that on each disk λm we have λ|Δ = (ξmim)k(m) and
λ(m)> Oif m £ U+.

Fact 3. The map (λ ° /ι)"1y has a unique smooth extension, Yo, across the

Proof. Because U+ is discrete in M, the compliment of p~\U+) is dense in
. Thus if there is a smooth extension it is unique. To show that Yo exists it

clearly suffices to show that, for each m e U+9 λ~\Yσm) has a smooth
extension across w, where σm: Δw ->J^ γ ) (Δ m ) is the section in Fact 1. When
we restrict to Δm, λ = Ujjk{m\ so

(3.28) λ-\Yo aM) = 2ΛA(e0 σ) - z Λ (e σ) + ̂ ( ^ σ),

which is clearly a smooth map from Δw to J£?+. q.e.d.
From now on, we refer to this smooth extension as Yo: J ^ γ ) -> «JδP+. It is now

a routine (albeit tedious) matter to show that if we set d(λ ° p) = μω + μω
and Z o = (λ © p)~ι(Z — μY0), then Zo: * ^ γ ) -> L5 is also smooth and we have
the relations

<y0, yo> = o, <y0, z o > = o, ( z 0 , zo> = o,

( Z o , Zo> = 2|z^ - Λfl^λo^)-2, dY0 = 370φ + Zoω + Zoω.

Fact 4. If &x = 0, then (y0): M2 -> S 3 is a constant map.
Proof. It clearly suffices to prove that (Y): M2 — Uf-^S3 is a constant

map. To do this, it is sufficient to note that

Y A Z = - ( z q - h ζ ) ( h z ) ( 2 e 0 /\eΛ + e Ae) = 0

if &x = 0, so y Λ ί/y s 0 on ̂ x

y\ This is well known to imply that (Y):
M2 -» £/+-> ,S3 is constant, q.e.d.

Now suppose .2^ ^ 0.
Fact 5. If v(m) is the vanishing order of Άx at m, then ^(m) > 2k(m).
Proof. If m ί £/+, there is nothing to prove, so assume k(m) > 0. Then, in

the notation of the proof of Fact 2, we see that

ζoσ = d(zoσ)/dξ = kξk-\ + ί*3

= (h °σ)/dξ + J(z ° σ) (z°σ)
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But then, on U, we have

J2x=σ*((zq-hζ)(ω)4)

Since ξ(m) = 0 but dξ Φ 0, the claim follows.

It follows, since

(dY09 dY0) = 4(λ o py
2\zq - hζ\2ω o ω,

that ( Γ 0 ) : M 2 ^ 5 3 i s a branched conformal immersion with branching order

p(m) - 2k(m) Sit m ̂  M (see [6]). This concludes the proof of Theorem C.

4. The spherical Willmore surfaces

In this section, we prove our main theorem concerning the Willmore

immersions X: S2 -> S3. The starting point is

Theorem D. Let X: S2 -> S3 be a Willmore immersion. Then £x=0. Thus,

either X is all umbilic, so that X(S2) c S3 is a round 2-sphere, or else X:

S2 -> S3 is a constant map.

Proof. The form Άx is a holomorphic section of κ4, where K is the canonical

bundle of S2 = P 1 . It is well known that K = 0(-2), so κ4 = Φ(-8). In

particular κ4 is a negative bundle so any holomorphic section of κ 4 vanishes

identically. T h u s J ^ Ξ 0. The rest follows from Theorem C.

Theorem E. Let X: M2^>S3 be a Willmore immersion of a compact

connected surface M2. Assume that X is not all umbilic but that Qx = 0. Let

X = ( Λ ) e S 3 , let D = X'\(y0)) c M 2 αAzJ feί M* = M - D. Then D is a

nonempty finite discrete set. If p: S 3 — (y0) -> E 3 w α stereographic projection,

then p ° X: M* —> E 3 is a complete minimal immersion with finite total curva-

ture. Its ends are imbedded and have zero logarithmic growth.

Proof. The fact that D is discrete (and hence finite) follows from the fact

that X is an immersion. The fact that p ° X: M* -> E 3 is minimal follows from

our discussion in §1, since, for each m e Af*, X(m) = (y0) Φ X(m) and we

saw that the stereographic projection S3 - {X(m)} -» E 3 caused the mean

curvature of the image surface to vanish to second order at m. Thus the mean

curvature H of p ° X: M* -» E 3 vanishes to second order at every m e M* and

hence must vanish identically on Λf*. Since there are no compact minimal

surfaces in E 3 , it follows that M* cannot be all of Λf, i.e., D Φ 0 .

The completeness of p « I : Af * -» E is almost obvious since it suffices to

show that if {/n,.} is a sequence in Af* converging to p0 e Z>, then p ° X{mt)

diverges to oo in E 3 . But, if m^p^ then A^ra,) -> X(p0) = (.y0) so
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p ° Xirrij) -> oo in E3. Finite total curvature follows from the identity in §1,
that

ί {-K)dA= f (H2-K)dA= ί Qx= fQx<ao9
JM* JM* JM* JM

where dA is the induced area form on M* for p<> X: M* -> E 3 and K is the
Gauss curvature of the induced metric. The first equality above follows from
H = 0, the second from §1, the third follows from the finiteness of Z>, and the
finiteness at the last stage follows from the compactness of M.

Clearly the ends of M* are in one-to-one correspondence with the points of
D. In fact, if m0 e D, then there exists a disk Δ o c M which is an open
neighborhood of m0 and on which X: Δ o -> S3 is an embedding. But then
p<> X: Δ o — {m0} -> E 3 is an imbedding. This shows that the end at m0 is
imbedded. Since m0 e D was arbitrary, it follows that p ° X: M* -> E 3 has
imbedded ends.

By a theorem of Osserman [9], it follows that 3(p ° X) is a meromorphic
C3-valued 1-form (of type (1,0)) on M with poles exactly on D. The fact that
each end is imbedded implies that the order of the pole at m0 e D is exactly 2.
Let Δ o c M be an open disk containing m0 (and no other point of D) and let
ξ: Δ o -» {α e C| |α| < 1} be a holomorphic coordinate with ξ(m0) = 0. It
follows that there exist vectors {vt ^ C3 |-2 < / < oo} with υ_2 ^ 0 so that on
Δ o we have a series expansion

a(P o x) = ( r V 2 + ΓVx + υ0 + ) rf{.

This implies (by the reality of p ° X) that, restricted t o Δ 0 - {m0},

poX= R e ( - Γ V 2 + log(€)ϋ.i + i>o€ + * * ) + F '

where V is a constant vector in E3. Because p o X is single valued on
Δ o — { w 0 } , we must have Im(ι;_1) = 0 so υ_λ e E3. If we use ( , ) to denote
both the inner product on E 3 and its complex extension to C3, we know that
the conformality of p <> X implies ( 8 ^ ° ^ ) , 3(p<> X)) = 0. In particular, this
gives

(*>-2> ^-2) = 0, (υ_29 ϋ_i) = 0, (υ_l9 υ_λ) = -2(υ_2, υ0).

It folllows that by a rotation and dilation in E3, we may arrange that

(ceR).



46 ROBERT L. BRYANT

We may then set ξ = ξι + iζ2 and compute that

(4.1)
Ί*o

+

(c/2)log|£|2
v,

where hl9 h2, and h3 are holomoφhic functions of ξ on the unit disk. We may

also assume V = 0 by translation in E 3 . It follows that for a small disk about

m0, the image under ρ° Xlooks much like an end of a catenoid. The constant

(-c) is called the logarithmic growth of the end at m0. We are going to show

that c = 0.

Let us suppose, contrariwise, that c Φ 0. Then the third component of

3(p © X) is of the form

(3(p A")) = c ( Γ x + tf0 + βxί + α 2 ! 2 + • • • ) # •

It is easy to see that there exists a unique holomorphic coordinate η: Δ o -» C

satisfying η(m0) = 0,

In fact, we may now replace ξ by η without affecting the normalizations

made thus far. This has the effect of setting h3 = 0 in (4.1). (Of course, if c

were zero, we could not do this.)

Now let /: E 3 - {0} -> E 3 - {0} be the inversion through the sphere of

radius one centered at 0 e E 3 :

ί * 1

X2

U 3
1

\x
2 x2

X j

This is a conformal transformation and exchanges 0 for the "point at

infinity". Because X: M2 -> S 3 is smooth at m 0 , it follows that ( / °p) ° X:

M -> E 3 is smooth at mQ. If we compute the third component of (I ° p)° X

restricted to Δ o we get

where / is a smooth function of ξ, ξ vanishing to second order at ί = 0. It is

now an elementary matter to show that, although ( φ o p ° X)3 is always C 1 at
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ξ = 0, it is never C2 unless c = 0. Since ( Φ ° p ° I ) 3 must be a smooth function
of £, we see that we must have c = 0. This completes the proof of Theorem E.

Remark. Because the ends of p ° X: M* -> E3 are imbedded, a theorem of
Osserman [9] asserts that

(4.2) fQx-f (-K)dA=2π(2d-χ(M)),

where d = \D\ = the number of points in D. Now, if (yλ) e S 3 is wctf in the
image of X, then, taking a stereographic projection px: S

3 — {(yι)} -> E 3 gives
an immersion ^ = p 1 < > A r : A f ^ E 3 which satisfies

(4.3) / (H2-K)ώϊ= fax=2π(2d-χ(M)).

Because X is an immersion and M is compact, the Gauss-Bonnet theorem
then implies

(4.4) f H2dA = 4πd.
JM

On the other hand, Li and Yau show [8, Theorem 6] that if ψ: M -> E 3 is
any smooth immersion and k is the maximum number of preimages under ψ of
a point in E3, then

(4.5) j H2

~1(In our case, -^~1(Pi((>;o))) = D so the map ψ = X always produces equality
in their theorem.

Another remark is that a converse to Theorem E holds in the following
sense: If M is an orientable surface and Xo: M -> E 3 is a complete minimal
immersion of finite total curvature, then the above quoted theorem of Osser-
man asserts that there is a compact Riemann surface M, a finite set of points
D c M and a diffeomorphism M -> M — D so that Xo: M — D -> E 3 is confor-
mal and 3X0 is a meromorphic C3-valued 1-form on M. If, moreover, the ends
are imbedded and have zero logarithmic growth, then we claim that the
composition Xo: M — D -^ Έ3 ̂ > S3 — (y0) has a smooth extension to X:
M -> S3 with X(D) = {(^0)} Obviously X will be a Willmore immersion with
&x = 0. To prove the smoothness of the extension, it suffices to note that,
when an end has zero logarithmic growth (and is imbedded), then on a disk
about m0 e D, we may put Xo in the form

Re(|Λ2)
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by a rotation and translation in E3. Here ξ = ξ1 + iξ2 is a local holomorphic

parameter with ξ(m0) = 0. One then computes that

1

where /(£, £) is a smooth (in fact, analytic) function vanishing to second order

at £ = 0. Obviously I ° Xo completes smoothly across m0.

It follows that for a compact, oriented surface Λf, the problem of classifying

the Willmore immersion X: M -> S3 satisfying Άx = 0 is equivalent to classify-

ing the complete minimal immersions X*: M* -> E 3 of finite total curvature

and with imbedded ends of zero logarithmic growth, where M* — M —

{m1?- -,md}. This latter is essentially an algebraic geometry problem. To see

this, suppose we start with an X* as above. We then give M* the unique

complex structure compatible with its orientation and the conformal structure

induced by X*. The completed surface, ΛΓ*, is diffeomorphic to ΛΓ by the

theorem of Osserman and henceforth we identify them, writing the deleted

points as D = { ml9 ,m d }. We know that

dX*
ω

where ω1, ω2, ω3 are meromorphic 1-forms on M. Our geometric data translate

into holomorphic data as follows:

(i) X* is an immersion <=> the ωi have no common zeros,

(ϋ) X* is conformal ~ (ω1)2 + (ω 2 ) 2 + (ω 3) 2 = 0.

(in) The ends of X* are imbedded <=> the ω' have poles of at worst second

order on D <=> the ω' are holomorphic sections of KM Θ [2Z>], where KM is the

canonical bundle of M with the given complex structure.

(iv) The ends of X* have zero logarithmic growth <=> the ω* are differentials

of the second kind, i.e. Res^ω1) = 0 for all / and all m e D.

(v) X* is single valued on ΛΓ* ~ for all γ e HX(M9 Z) Re(Perγ(ω')) = 0 for

1 = 1,2,3. (Note that this is well defined because of (iv).)

Conversely, if we start with M and wish to construct the possible Z*'s, then

we begin by selecting a complex structure on M and a divisor D = mι +

• + md, where the mδ e M are distinct. The vector space H°(KM ® [ID])

of holomorphic sections of KM <8> [2D] is a complex vector space of dimension

2 d + g - 1 by the Riemann-Roch Theorem (see [5]). The subspace

H°(KM ®[2Z>]) = (ω e H°(KM Θ[2Z)])|ResJco) = Oform e D)
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is a complex vector space of dimension d + g. Finally, the subspace

VD = [ω ε H°(KM Θ[2D])|Re(Perγ(ω)) = Oforally e Hλ(M,Z)}

is known to be a real vector space of dimension 2d. To construct an X*, it

remains to select three elements ω1, ω2, ω3 e VD with no common zeros and

satisfying

If this can be done (it may not be possible for a given D), the required X* is

then given by the Weierstrass formula

X*(M) = X*(m0) + Re r
ΠΊQ

where mo£ D. The ω' were chosen to lie in VD precisely to insure that the real

part of the path integral in this formula should be independent of the path

joining m tom0.

In the case that M = S2 we can be much more explicit for two reasons.

First, S2 has a unique conformal structure up to diffeomorphisms. It follows

that there is no loss of generality in assuming that S2 = P1, the complex

projective line, and that the Willmore immersion under consideration is

actually conformal as a map X: P 1 -> S3. Second, Hλ(S2,Z) = (0), so condi-

tion (v) above is vacuous. Indeed, we can say more: Any meromorphic 1-form

φ on P 1 with no residues is exact, i.e., there exists a meromorphic function/on

P 1 with φ = df. This is more or less clear, but for a proof, see [5].

This brings us to our main theorem:

Theorem F. Let X.P1 -> S3 be α conformal Willmore immersion. There

exist a point (y0) e ^ ( P 1 ) {unique if X is not totally umbilic) so that D =

X~ι((y0)) is a divisor in P 1 with distinct points, a stereographic projection p:

S3 — {(j>0)}-*E3 and a meromorphic curve f: P 1 -> C 3 with simple poles along

DsothatpoX= Re(/).

Moreover f is an immersion with null tangents (i.e. (df, df) = 0). Conversely,

iff: P 1 -> C 3 is a meromorphic immersion with simple poles along D and null

tangents, then Re(/): P 1 — D -> E 3 completes smoothly across D to be a

conformal Willmore immersion (Re(/)): P 1 -> S3.

Proof. By Theorem D, Άx = 0. If X is all umbilic, choose (j>0) arbitrarily

on ^(P 1 ) c S3. Then any stereographic projection p: S3 - {y0} -> E 3 makes

p o I : P 1 - D ^ E 3 a stereographic projection onto a plane. Note that in this

case D is a single point. If X is not all umbilic, we apply Theorem E. In either



50 ROBERT L. BRYANT

case, po X: P 1 - D -» E 3 is a conformal minimal immersion which is com-
plete, has finite total curvarture and imbedded ends with zero logarithmic
growth. It follows that 3(ρ ° X) is a meromorphic C3-values 1-form with no
residues and double poles along D. By our discussion above, there exists a
meromorphic /: P 1 -* C3 so that df = 23(p ° X) and / clearly must have
simple poles along D. Now

d(p o X) = 3(p o X) + 3(p o x) = \(df + df) = </Re(/).

By adding a constant to/we may arrange that p ° X = Re(/). Note that/is an
immersion since p ° Xis and that

The converse is now elementary, q.e.d.
The determination of the meromorphic null curves/: M -> C3 (where Af is a

Riemann surface) is classical, see [4]. For such an/, either/(M) is a null line
in C 3 or else there exist meromorphic functions g, h on M with g nonconstant
so that

/= -

where h' and λ" are meromorphic functions on M defined by hr = dh/dg and
h" = dh'/dg.

We then have

i/2

0

-i/2g

\g
-1

' (1

(1

+ g

-g'

g

!/4)

g
If we regard g as a holomorphic map g: M -* P1, then g is the Gauss map of

the minimal immersion Re(/): M - D - » E 3 ( D i s the polar divisor of/), see
[9]

Unfortunately, it appears to be a nontrivial algebraic problem, even when
M = P1, to specify g and h so that the resulting / will be a meromorphic
immersion with simple poles.

5. An example and further results

It follows from our results in §4 that the critical values of the modified
Willmore functional
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for immersion X: S2 -* S3 lie in the discrete set {4πd\d > 0). Obviously, if
iΓsi(X) = 0, then Ωx = 0 so that X is totally umbilic and hence X gives a
diffeomorphism of S2 onto a round 2-sphere in S3. Thus, all these Willmore
immersions are equivalent modulo reparametrizations in S2 and conformal
transformations in S3.

If X: S2 -> S 3 is a Wilhnore immersion with ϋrsi(X) = Amd > 0, then X is
not totally umbilic and the associated meromorphic null curve/: P 1 — D -» C3

has J 4- 1 poles. It is easy to see that the requirement that / be an immersion
with simple poles eliminates the possibilities d = 1,2. Thus 4π and 877 are not
critical values of ^ 2 . When d = 3, a calculation shows that there is a
meromorphic coordinate z: P 1 — (/J^) -> C so that Z> is given by

In fact, if we let ε denote a nontrivial cube root of unity, then the curve
υΛ tλ> υ*

where f0 e C 3 and ϋ0, υl9 v2, v3 e C3 satisfy

(u,,ϋ,.) = λ # 0 , 1 < / < y < 3,

is the most general meromoφhic null immersion with polar divisor D.
Now it is easy to see that two such curves, / and /, determine conformally

equivalent map, (Re(/)): P 1 -> S3 and (Re(/)): P 1 -^ ,S3 if and only if the
minimal immersions Re(/) and Re(/): P 1 — D -> E 3 differ by Euclidean
motions and dilations. By translation and dilation in E 3 we may normalize our
maps/and/so that/0 = f0 = 0 and |λ| = |λ| = 1.

Now every real rotation R: E3 -> E3 extends complex linearly to R: C3 -> C3.
This imbeds SO(3,R) into SO(3, C). Clearly, there exists a n ^ G SO(3, C) and a
μ e C satisfying

^ = μAυi9 0 < / < 3

(we have λ = μ2λ). It is now not difficult to show that Re(/) and Re(/) differ
by a Euclidean motion if and only if A G SO(3, R) and μ = 1.

It follows that, after taking into account reparametrization in S 2 and
conformal transformations in S3, the moduli space for Wilhnore immersions
with d = 3 (i.e. iTsi(X) = 12ττ) is SO(3, C)/SO(3,R) X S1 modulo the action
of A 4, the alternating group on four letters (permuting the points of D by
linear fractional transformations on P1). Surprisingly, this space is not compact
and is of dimension 4 (at its smooth points).
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Now a similar situation holds for d = 2n + 1, n ^ 1. One can show that,
modulo the obvious equivalences, the moduli space of Willmore immersions X:
S2 -> S3 with Ψ°S2(X) = Aπd is nonempty and of dimension 4/2 at its smooth
points.

For even values of d, this author does not know whether the moduli space is
nonempty.

In view of Theorem C, it seems natural to attempt to extend the Willmore
functional to the space of conformal branched immersions X: M2 -> S3, where
M is an oriented surface with a fixed conformal structure. In fact this can be
done, though considerable care must be exercised in extending the conformal
Gauss map yx: M2 -> Q across the branching divisor B. Once this is done, Ω^
is again seen to be a smooth 1-form on X. The condition 8ΩX = 0 then allows
us to construct X: M2 -> S3 in a smooth manner. It, too, is a branched
conformal Willmore immersion. In fact, if we let B denote the branching
divisor of X and let U+ denote the divisor

U+= Σ k(m)m>0,

then, for M compact and connected, either
(i) Xis totally umbilic,

( i i )^ is constant, or
(iii) we have the equation of line bundles

Thus, for M = S2, the third possibility cannot occur.
When M is a torus, KM has degree zero so either X: M2 -> S3 is a branched

cover of a round 2-sphere, comes from a minimal surface in E 3 by stereo-
graphic projection, or else X and X are both imersions (B = B = 0) and
£/+= 0. In the first two cases, iΓM(X) = Aπd, where d > 2. In the third case,
the Clifford torus in S3 furnishes a Willmore surface with i^M{X) = 2π2 < 8ττ
(see [12]).

Whenever the second possibility occurs, a stereographic projection p: S3 —
{X(M)} -> E 3 makes ρ<> X: M — D -> E3 a complete branched minimal
immersion of finite total curvature (here D = X~ι(X(m))). The meromorphic
form 3(p <> X) still has poles along D but they may be of higher order than 2. It
seems likely that 3(ρ ° X) has no residues, but we have not proved this.
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