1.5 Two steps backward

1.6 Cayley: global linearity

By Cayley geometry I mean essentially the Riemannian geometry associated with (or induced by) a linear or affine mapping of \mathbb{R}^{n}. In this section I will let $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be given by

$$
\psi(\mathbf{x})=A \mathbf{x}+\mathbf{b}
$$

where $A \in G L_{n}(\mathbb{R})$ is an $n \times n$ invertible matrix (with constant entries) and \mathbf{b} is a fixed affine translation vector. We will denote the inverse of ψ by $\phi=\psi^{-1}$, the matrix A by $\left(a_{i j}\right)$, and the inverse A^{-1} by $\left(a^{i j}\right)$ where the entries in the inverse matrix are indexed by superscripts.

In principle we may consider the Riemannian manifold $\mathbb{R}_{\left(g_{i j}\right)}^{n}$ with global chart \mathbb{R}^{n} equipped with any positive definite symmetric matrix assignment $\left(g_{i j}\right)$ and broaden the notion of Cayley geometry to linear changes of variable. As a start (at least when we do any semi-serious calculation) let us begin simply with flat Euclidean space \mathbb{R}^{n}, and for the moment we will focus on the case $n=2$ (the plane) and the case with $\mathbf{b}=\mathbf{0}$. See Figure 1.10.

Figure 1.10: A nonsingular linear mapping of the plane
When \mathbb{R}^{n}, or \mathbb{R}^{2} in this case, is considered as a Riemannian manifold we take the matrix assignment I associated with each point $\mathbf{x} \in \mathbb{R}$. As a result,
the Euclidean length of a C^{1} path $\alpha:[a, b] \rightarrow \mathbb{R}^{n}$ is given by

$$
\operatorname{length}[\alpha]=\int_{(a, b)} \sqrt{\left\langle I \alpha^{\prime}, \alpha^{\prime}\right\rangle}
$$

as usual.
Exercise 1.46. Find the matrix assignment $\left(g_{i j}\right)$ for which the path β : $[a, b] \rightarrow \mathbb{R}^{2}$ given by $\beta=\psi \circ \alpha$ has length satisfying

$$
\operatorname{length}_{\left(g_{i j}\right)}[\beta]=\int_{(a, b)} \sqrt{\left\langle\left(g_{i j}\right) \alpha^{\prime}, \alpha^{\prime}\right\rangle}=\operatorname{length}[\alpha]
$$

for every C^{1} path $\alpha:[a, b] \rightarrow \mathbb{R}^{2}$.
Exercise 1.47. Given a constant $n \times n$ matrix $\left(g_{i j}\right)$ which is positive definite and symmetric, does there exist a matrix $\left(a_{i j}\right) \in G L_{n}(\mathbb{R})$ with

$$
\begin{equation*}
\left(a^{i j}\right)^{T}\left(a^{i j}\right)=\left(g_{i j}\right) ? \tag{1.32}
\end{equation*}
$$

Exercise 1.48. Given a constant $n \times n$ matrix $\left(g_{i j}\right)$ which is positive definite and symmetric, find all matrices $\left(g^{i j}\right)$ for which (1.32) holds. Hint: Consider $\left(g_{i j}\right)=\left(\delta_{i j}\right)=I$ and remember the orthogonal matrices $O_{n}(\mathbb{R})$.

Exercise 1.49. Given

$$
A=\frac{1}{4}\left(\begin{array}{rr}
3 & -2 \\
-1 & 2
\end{array}\right),
$$

complete the following:
(a) Find the matrix assignment $\left(g_{i j}\right)$ described in Exercise 1.46.
(b) Find all matrices for which (1.32) holds as in Exercises 1.47 and 1.48.

1.7 Gauss: surfaces

1.8 Riemann: charts

